305-CD-044-001
EOSDIS Core System Project

Flight Operations Segment (FOS)
Telemetry Design Specification
for the ECS Project

October 1995

Hughes Information Technology Corporation
Upper Marlboro, MD



Flight Operations Segment (FOS)
Telemetry Design Specification
for the ECS Project

October 1995

Prepared Under Contract NA S5-60000

CDRL Item #046
APPROVED BY
Ca Moore /9 9/22/95
Cal Moore, FOS CCB Chairman Date

EOSDIS Core System Project

Hughes Information Technology Cor poration
Upper Marlboro, Maryland



This page intentionally left blank.

ii 305-CD-044-001



Preface

Thisdocument, one of nineteen, comprisesthe detailed design specification of the FOS subsystems
for Releases A and B of the ECS project. This includes the FOS design to support the AM-1

launch.

The FOS subsystem design specification documents for Releases A and B of the ECS project in-

clude;

305-CD-040
305-CD-041
305-CD-042
305-CD-043
305-CD-044
305-CD-045
305-CD-046
305-CD-047
305-CD-048
305-CD-049
305-CD-050
305-CD-051
305-CD-052
305-CD-053
305-CD-054
305-CD-055
305-CD-056
305-CD-057
305-CD-058

FOS Design Specification (Segment Level Design)
Planning and Scheduling Design Specification
Command Management Design Specification
Resource Management Design Specification
Telemetry Design Specification

Command Design Specification

Real-Time Contact Management Design Specification
Analysis Design Specification

User Interface Design Specification

Data Management Design Specification

Planning and Scheduling Program PDL

Command Management PDL

Resource Management PDL

Telemetry PDL

Real-Time Contact Management PDL

Anaysis PDL

User Interface PDL

Data Management PDL

Command PDL

Object models presented in this document have been exported directly from CASE tools and in
some cases contain too much detail to be easily readable within hard copy page constraints. The
reader is encouraged to view these drawings on line using the Portable Document Format (PDF)
electronic copy available via the ECS Data Handling System (EDHS) at URL http://edhsl.gs-
fc.nasa.gov.

iii 305-CD-044-001



Thisdocument isacontract deliverable with an approval code 2. Assuch, it does not require formal
Government approval, however, the Government reserves the right to request changes within 45
days of the initial submittal. Once approved, contractor changes to this document are handled in
accordance with Class | and Class Il change control requirements described in the EOS Configu-
ration Management Plan, and changes to this document shall be made by document change notice
(DCN) or by complete revision.

Any guestions should be addressed to:

Data Management Office

The ECS Project Office

Hughes Information Technology Corporation
1616 McCormick Drive
Upper Marlboro, MD 20785

Y% 305-CD-044-001



Abstract

The FOS Design Specification consists of a set of 19 documents that define the FOS detailed de-
sign. Thefirst document, the FOS Segment Level Design, provides an overview of the FOS seg-
ment design, the architecture, and analyses and trades. The next nine documents provide the
detailed design for each of the nine FOS subsystems. The last nine documents provide the PDL
for the nine FOS subsystems. It also allocates the level 4 FOS requirements to the subsystem de-
sign.

Keywords: FOS, design, specification, anaysis, IST, EOC

% 305-CD-044-001



This page intentionally left blank.

vi 305-CD-044-001



Change Information Page

List of Effective Pages

Page Number Issue
Title Original

iii through vii Original
1-1and 1-2 Original
2-1 through 2-4 Original
3-1 through 3-84 Original
GL-1 through GL-8 Original

Document History

Document Status/Issue Publication Date CCR Number
Number
305-CD-044-001 Original October 1995 95-0679

Vil

305-CD-044-001



This page intentionally left blank.

viii 305-CD-044-001



Contents

11
1.2
1.3
14
15

21
22
2.3

31
32

3.3

Preface
Abstract
Change Information Page

1. Introduction

01 11 o= 1 o o OSSPSR 1-1
0] <SS 1-1
PUIDOSE. ...ttt e st e e st e e e s abe e e e b e e e nane e e enreesanneenreeenn 1-1
Status and SCHEAUIE .........oove e e 1-1
Document OrganiZatioN .........ccccceeiiieeiieeiiesee e e see e e esre e se e reesseeeteesraeereesreesneens 1-1

Parent DOCUMENT ........oooiiiiiieeeree et sn e sn e e s ne e s n e sneesnneens 2-1
APPIICADIE DOCUMENTS ...ttt sr e sb e 2-1
INfOrmMation DOCUMENES .....c.eiiiiiiiiieie ettt ettt sreesae e 2-2
2.3.1 Information Document REFEIENCEd ..........ccooveiiriiiiienesesee e 2-2
3.Telemetry
Telemetry Context DESCIIPLION. ........cccieiieiiie et e 31
Telemetry DECOMMULEBLION .......cccveeeiieiieieeseese e se e e e s nee e 3-3
321 Telemetry Decommutation COMEXTE ........ccoeveieerierieriereneseeeeee e 3-3
3.2.2 Telemetry Decommutation INtErfaces ........ccovevivevieiie e 35
3.2.3 Telemetry Decommutation Object Model ........cccoeoveievieieccseee e 3-5
3.24 Telemetry Decommutation Dynamic Model ..........cccoiiiiinininicicneseeee, 311
3.25 Telemetry Decommutation Data DiCtionary...........cccceeveeviecreesieeesieesee e 3-28
Y/ 0T Y 10 11 o o SRR 3-42
3.3.1 Memory DUMP CONLEXT .......ccoceiiiiiieiiiee st 3-42
3.3.2 Memory DUMP INEITACES ......cocviieieieeiere e 3-44
3.3.3 Memory Dump Object MOE ........cccooiiiiiececc e 3-44
3.34 Memory Dump DynamiC MOEl ........cccoccevieiieecieeee e 3-46
3.3.5 Memory Dump Data DiCtiONaIY .........ccoceveririerenieeeieiesee e 3-51

IX 305-CD-044-001



34 SPACECraft StAE CHECK .....ceiiiiiieieste et 3-53

3.4.1 Spacecraft State CheCk CONLEXL .......c.coeerieriiirieriieee e 3-53
3.4.2 Spacecraft State Check INtErfaces ........cvveveieeiiee e 3-55
3.4.3 Spacecraft State Check Object MOdel ..o 3-56
3.4.4 Spacecraft State Check Dynamic Model ... 3-58
3.4.5 Spacecraft State Check Data DiCtionary ..........ccocvevueeeeveeieseese e see e esee s 3-65
35 ParamELEr SEIVEY ... r e s e n e e sne e e neenne e 3-66
3.5.1 Parameter SErver CONEXL ........ooiiiiiiiieniee ettt 3-66
3.5.2 Parameter Server INtErfaCes ......ccooceeviiieiieeeeee e 3-68
3.5.3 Parameter Server Object MOdEl .........cceevviiiiiee e 3-68
3.5.4 Parameter Server DynamiC Model ... 3-70
3.5.5 Parameter Server DaaDiClONAIY ........ccooeeieerieneeieseesiee e 3-78

Abbreviations and Acronyms

Glossary
Figures

3.1-1 Telemetry COnteXt DIagram ......cccveceieerieiieseeseetesee e sae e esae e sreees 3-2
3.2-1 Telemetry Decommutation Context DIiagraim ..........ccoceoerererineneeieeneene e 3-4

3.2-2 Telemetry Decommutation Object MOdE ...........ccveiieiiiiiiiesecceeee e 3-6

3.2-3 Parameter Table ObjeCt MOUEl ........ccooeeieeeceeee e 3-8

3.2-4 Derived Telemetry ODJect MOTE! .........coooiiiiiiieee e 3-10
3.2-5 Decommutate an EDU EVENE TIaCe ......ccceeiiiiiieiieieeeee e 3-12
3.2-6 Select Subsystem Decommutation Mode Event Trace.........cccevveeeveevesceeseesesee s 3-14
3.2-7 Turn Archiving Mode On EVENt TTraCe. ..o e 3-16
3.2-8 Read aDatabase EVENE TIaCe ......cccviieiiriieiiesie ettt 3-17
3.2-9 Telemetry Derived ParameterS EVENt TTaCe .....cccccceveevieeieesiere e 3-19
3.2-10 Set Polynomial Coefficientsfor EU Conversion Event Trace..........ccoveveveeveeneniensennne 3-21
3.2-11 Request to Adjust LIMItS EVENE TIaCe ......oocvviiiieiiecie et 3-23
3.2-12 Obtain Current Limit VAUES EVENE TIaCE ....ccoveveiiirieeieeee e 3-25
3.2-13 Parameter Updating EVENE TIaCE ......ccoiiiieiieieriericete et 3-27
3.3-1 Memory Dump ContexXt DIagram ........ccccceeiiieiieiieesie e esiee st ee e ee st sree e e snee s 3-43
3.3-2 Memory DUmMp ODJECt MOE ........ccooiiiieeeeeeeeee e 3-45
3.3-3 Memory Dump State Transition DIiagram .........ccceeeeeeeeieeieenese e 3-47
3.3-4 Awaiting Message State EVENE TIaCE........cciveiiieiiecie et 3-48
3.3-5 Dump Mode State EVENE TTECE .....eceeiieeiieciesecsie e et ae et nne s 3-50
3.4-1 Spacecraft State Check Context DIagram ..........cooeererierieeiierese e 3-54

X 305-CD-044-001



3.4-2
3.4-3
34-4
3.4-5
3.4-6
351
3.5-2
3.5-3
354
3.5-5
3.5-6

3.2-1.

331
34-1
351

Spacecraft State Check OBjeCt MOE! ..........cooiiiiriiiie e 3-57

Initialize Spacecraft State Check EVENnt TraCe.........cocvvveveererieneereee e 3-59
Load Expected State Table EVENt TIaCe .......ccveeeveeiece et 3-61
State Check BaseLing EVENE TIaCE .....coveiveiierierie e seesie e see st eae e see e sneesseesesneens 3-62
State Check Perform BEVENt TraCte ..ot 3-64
Parameter Server Context DIagram ........ccccceeceeieieeseeiee e s esee e sae e 3-67
Parameter Server ODJeCt MOGE ..o 3-69
Register a Continuous USer EVENE TIaCe.......cccviveieerieeie e 371
Register aOne Shot USer EVENE TIaCe ......ccvevuveieceesie ettt 3-73
Send Buffer to Continuous Client EVENE TTraCe ......cccccevveceeeeneeieseeseeesee e e enee e 3-75
Update Client INterestS EVENt TIaCE ......ccoveeririeiiesieeie ettt 3-76
Tables
Telemetry Decommutation INEEIfaCcES.........ccveiiv e 35
Memory DUMP INEEITACES. .......coeieeiece e ens 3-44
Spacecraft State Check INLErfaCeS..........cooiiiiiiiieeee s 3-55
Parameter Server INTEITACES .......ooeo i e 3-68

Abbreviations and Acronyms

Glossary

Xi 305-CD-044-001



This page intentionally left blank.

Xil 305-CD-044-001



1. Introduction

1.1 Identification

The contents of this document defines the design specification for the Flight Operations Segment
(FOS). Thus, this document addresses the Data Item Description (DID) for CDRL item 046
305/DV 2 under Contract NA S5-60000.

1.2 Scope

The Flight Operations Segment (FOS) Design Specification definesthe detailed design of the FOS.
It alocates the level 4 FOS requirements to the subsystem design. It aso defines the FOS
architectural design. In particular, this document addresses the Data Item Description (DID) for
CDRL # 053, the Segment Design Specification.

This document reflects the August 23, 1995 Technical Baseline maintained by the contractor
configuration control board in accordance with ECS Technical Direction No. 11, dated December
6, 1994. It coversreleases A and B for FOS. This corresponds to the design to support the AM-1
launch.

1.3 Purpose

The FOS Design Specification consists of a set of 19 documents that define the FOS detailed
design. The first document, the FOS Segment Level Design, provides an overview of the FOS
segment design, the architecture, and analyses and trades. The next nine documents provide the
detailed design for each of the nine FOS subsystems. The last nine documents provide the PDL
for the nine FOS subsystems.

1.4 Status and Schedule

This submittal of DID 305/DV2 incorporates the FOS detailed design performed during the
Critical Design Review (CDR) time frame. Thisdocument isunder the ECS Project configuration
control.

1.5 Document Organization

305-CD-040 contains the overview, the FOS segment models, the FOS architecture, and FOS
analyses and trades performed during the design phase.

305-CD-041 contains the detailed design for Planning and Scheduling Design Specification.
305-CD-042 contains the detailed design for Command Management Design Specification.
305-CD-043 contains the detailed design for Resource Management Design Specification.
305-CD-044 contains the detailed design for Telemetry Design Specification.

305-CD-045 contains the detailed design for Command Design Specification.

305-CD-046 contains the detailed design for Rea-Time Contact Management Design
Specification.

1-1 305-CD-044-001



305-CD-047 contains the detailed design for Analysis Design Specification.
305-CD-048 contains the detailed design for User Interface Design Specification.
305-CD-049 contains the detailed design for Data Management Design Specification.
305-CD-050 contains Planning and Scheduling PDL.

305-CD-051 contains Command Management PDL.

305-CD-052 contains Resource Management PDL.

305-CD-053 contains the Telemetry PDL.

305-CD-054 contains the Real-Time Contact Management PDL.

305-CD-055 contains the Analysis PDL.

305-CD-056 contains the User Interface PDL.

305-CD-057 contains the Data Management PDL.

305-CD-058 contains the Command PDL.

Appendix A of the first document contains the traceability between Level 4 Requirements and the
design. The traceability maps the Level 4 requirements to the objects included in the subsystem
object models.

Glossary contains the key terms that are included within this design specification.

Abbreviations and acronyms contains an alphabetized list of the definitions for abbreviations and
acronyms used within this design specification.

1-2 305-CD-044-001



2. Related Documentation

2.1 Parent Document

The parent documents are the documents from which this FOS Design Specification’s scope and
content are derived.

194-207-SE1-001 System Design Specification for the ECS Project

304-CD-001-002 Flight Operations Segment (FOS) Requirements Specification for the
ECS Project, Volume 1: General Requirements

304-CD-004-002 Flight Operations Segment (FOS) Requirements Specification for the

ECS Project, Volume 2: Mission Specific

2.2 Applicable Documents

The following documents are referenced within this FOS Design Specification or are directly
applicable, or contain policies or other directive matters that are binding upon the content of this
volume.

194-219-SE1-020 Interface Requirements Document Between EOSDIS Core System
(ECS) and NASA Institutional Support Systems

209-CD-002-002 Interface Control Document Between EOSDI S Core System (ECS) and
ASTER Ground Data System, Preliminary

209-CD-003-002 Interface Control Document Between EOSDIS Core System (ECS) and
the EOS-AM Project for AM-1 Spacecraft Analysis Software,
Preliminary

209-CD-004-002 Data Format Control Document for the Earth Observing System (EOS)
AM-1 Project Data Base, Preliminary

209-CD-025-001 |CD Between ECS and AM 1 Project Spacecraft Software Devel opment
and Validation Facilities (SDVF)

311-CD-001-003 Flight Operations Segment (FOS) Database Design and Database
Schemafor the ECS Project

502-1CD-JPL/GSFC Goddard Space Flight Center/MO& DSD, Interface Control Document
Between the Jet Propulsion Laboratory and the Goddard Space Flight
Center for GSFC Missions Using the Deep Space Network

530-ICD-NCCDS/MOC Goddard Space Flight Center/MO&DSD, Interface Control Document
Between the Goddard Space Flight Center Mission Operations Centers
and the Network Control Center Data System

530-1ICD-NCCDS/POCC Goddard Space Flight Center/MO&DSD, Interface Control Document
Between the Goddard Space Flight Center Payload Operations Control
Centers and the Network Control Center Data System

2-1 305-CD-044-001



530-DFCD-NCCDS/POCCGoddard Space Flight Center/MO&DSD, Data Format control

540-041

560-EDOS-0230.0001

|CD-106

none

Document Between the Goddard Space Flight Center Payload
Operations Control Centers and the Network Control Center Data
System

Interface Control Document (1CD) Between the Earth Observing
System (EOS) Communications (Ecom) and the EOS Operations Center
(EOC), Review

Goddard Space Flight Center/MO&DSD, Earth Observing System

(EOS) Dataand Operations System (EDOS) Data Format Requirements
Document (DFRD)

Martin Marietta Corporation, Interface Control Document (ICD) Data
Format Control Book for EOS-AM Spacecraft

Goddard Space Flight Center, Earth Observing System (EOS) AM-1
Flight Dynamics Facility (FDF) / EOS Operations Center (EOC)
Interface Control Document

2.3 Information Documents

2.3.1 Information Document Referenced
The following documents are referenced herein and, amplify or clarify the information presented

in this document.

Specification.
194-201-SE1-001
194-202-SE1-001
193-208-SE1-001
308-CD-001-004
194-501-PA1-001
194-502-PA1-001

604-CD-001-004
604-CD-002-001

604-CD-003-001

194-WP-912-001
194-WP-913-003
194-WP-920-001
194-TP-285-001
222-TP-003-006

These documents are not binding on the content of this FOS Design

Systems Engineering Plan for the ECS Project

Standards and Procedures for the ECS Project

Methodology for Definition of External Interfaces for the ECS Project
Software Development Plan for the ECS Project

Performance Assurance Implementation Plan for the ECS Project
Contractor's Practices & Procedures Referenced inthe PAIPfor theECS
Project

Operations Concept for the ECS Project: Part 1-- ECS Overview, 6/95

Operations Concept for the ECS project: Part 2B -- ECS Release B,
Annotated Outline, 3/95

ECS Operations Concept for the ECS Project: Part 2A -- ECS Release
A, Final, 7/95

EOC/ICC Trade Study Report for the ECS Project, Working Paper
User Environment Definition for the ECS Project, Working Paper
An Evauation of OASIS-CC for Use in the FOS, Working Paper
ECS Glossary of Terms

Release Plan Content Description

2-2 305-CD-044-001



none Hughes Information Technology Company, Technical Proposal for the
EOSDIS Core System (ECS), Best and Final Offer

560-EDOS-0211.0001  Goddard Space Flight Center, Interface Requirements Document (IRD)
Between the Earth Observing System (EOS) Data and Operations
System (EDOS), and the EOS Ground System (EGS) Elements,
Preliminary

NHB 2410.9A NASA Hand Book: Security, Logistics and Industry Relations
Division, NASA Security Office: Automated Information Security
Handbook

2-3 305-CD-044-001



This page intentionally left blank.

2-4 305-CD-044-001



3. Telemetry

The telemetry subsystem provides the capability to ingest, decommutate, convert, and limit check
housekeeping, memory dump, or engineering telemetry data from the EOS spacecraft and instru-
ments. The telemetry subsystem also provides mechanismsto calcul ate derived parameters and to
extract and forward subsets of the processed telemetry. The telemetry subsystem has the ability to
receive and process real-time contact or historical replay telemetry. Real-time spacecraft state-
checking is an additional capability.

3.1 Telemetry Context Description

The telemetry subsystem context diagram shown in Figure 3.1-1 depicts the data flows between
the FOS Telemetry Subsystem and the external ground system as well as EOC internal compo-
nents. Descriptions of the data flows are summarized for each component:

EDOS:. The EDOS forwards telemetry to the Telemetry Subsystem via EDOS Data
Units(EDUs). Each EDU contains a reconstructed CCSDS telemetry packet, quality
information, and time stamp. The packetized message transports either real-time or
simulated spacecraft telemetry. The Telemetry Subsystem receives spacecraft and
instrument Housekeeping (H/K), Health and Safety (H/S), and Diagnostic memory dump
data.

FDF. The Flight Dynamics Facility receives real-time, decommutated attitude telemetry.
This telemetry subset provides the FDF with spacecraft attitude information which allows
the FDF to track and recommend spacecraft orbit adjustments.

FOS Command Subsystem: The Command Subsystem receives decommutated or derived
telemetry values that facilitate the verification of real-time and spacecraft stored
commands.

FOS User Interface: The User Interface receives and displays decommutated or derived
telemetry values, event information, and status information generated by the Telemetry
Subsystem.

FOS Anaysis Subsystem: The Analysis Subsystem recelves decommutated or derived
historical telemetry values that facilitate analysis and trending of spacecraft subsystem
health and anomalies.

FOS Resource Management Subsystem: The Resource Management Subsystem supplies
configuration information required by the Telemetry Subsystem for real-time or historical
telemetry processing. This data includes telemetry database selections, EDOS and client
communication channels, and user configuration requests. Checkpoint information and
user directive status is forwarded from the Telemetry Subsystem to the Resource
Management Subsystem.

FOS Data Management Subsystem: As part of the Telemetry Subsystem initialization
phase, telemetry database information concerning telemetry decommutation, conversion,

3-1 305-CD-044-001



€

T00-770-AD-S0E

MSS
Management
Subsystem

FOS
Command
Subsystem

Information

TIm Values

Parameter List

EDOS

Status

Checkpoint Info
Directive Status

v

FOS
Resource
Management
Subsystem

Config Info
User Control Directives

FOS
Telemetry

Subsystem

Attitude
Tim

TIm

Values

FOS
Analysis
Subsystem

Parameter
List

FDF

EDUs
Events
Memory Dump

Figure 3.1-1. Telemetry Context Diagram

TIim Values
Events \/

Parameter

List —

FOS
User
Interface

Tim DB
Historical EDUs
Expected S/C State

FOS
Data
Management
Subsystem




and checking is retrieved from the Data Management Subsystem. During a real-time
gpacecraft contact, telemetry EDUs, memory dump data, and telemetry events are
forwarded to the Data Management Subsystem for storage and processing. The Data
Management Subsystem supplies historical telemetry EDUSs to the Telemetry Subsystem
during FOS replays or telemetry analysis.

CSMS Management Subsystem: The CSMS Management Subsystem processes
messages and collects information pertaining to the status of the Telemetry Subsystem.

3.2 Telemetry Decommutation

The Telemetry Decommutation component provides the capability to decommutate, convert, and
limit check housekeeping or engineering telemetry data from the EOS spacecraft and instruments.
Telemetry decommutation also provides the mechanismsto calcul ate derived parameters.

3.2.1Telemetry Decommutation Context

The telemetry decommutation context diagram shown in Figure 3.2-1 depicts the data flows be-
tween the FOS Telemetry Subsystem and external ground system as well as EOC internal compo-
nents. Descriptions of the data flows are summarized for each component:

EDOS:. The EDOS forwards telemetry to decommutate via EDOS Data Units (EDUS).
Each EDU contains a reconstructed CCSDS telemetry packet, quality information, and
time stamp. The packetized message transports either real-time or smulated spacecraft
telemetry. Telemetry decommutation receives spacecraft and instrument Housekeeping (H/
K) and Health and Safety (H/S).

Parameter Server: The Parameter Server receives parameters from Decom.

FOS Data Management Subsystem: As part of the telemetry decommutation initialization
phase, telemetry database information concerning decommutation, conversion, and
checking isretrieved from the Data M anagement Subsystem. During areal-time spacecraft
contact, telemetry EDUs, and telemetry events are forwarded to the Data Management
Subsystem for storage and processing. The Data Management Subsystem supplies
historical telemetry EDUs to the Telemetry Subsystem during FOS replays or telemetry
analysis.

FOS Resource Management Subsystem: The Resource Management Subsystem supplies
configuration information required by Telemetry Decommutation for real-time or
historical telemetry processing. This data includes telemetry database selections, EDOS
and client communication channels, and user configuration requests. Checkpoint
information and user directive status are forwarded from Telemetry Decommutation to the
Resource Management Subsystem.

3-3 305-CD-044-001



v-€

T00-770-AD-S0E

CSMS
Managemnet
Subsystem

FOS
Command
Subsystem

Information

TIm Values

Parameter List

EDOS

Status

Checkpoint Info
Directive Status

v

FOS
Resource
Management
Subsystem

Figure 3.2-1.

Config Info
User Control Directives

FOS
Telemetry

Subsystem

Attitude
Tim

TIm

Values

FOS
Analysis
Subsystem

Parameter
List

FDF

EDUs
Events
Memory Dump

Telemetry Decommutation Context Diagram

Parameter

List —

TIim Values
Events \/

FOS
User
Interface

Tim DB
Historical EDUs

Expected S/C State

FOS
Data
Management
Subsystem




3.2.2 Telemetry Decommutation Interfaces

Table 3.2-1. Telemetry Decommutation Interfaces

Interface Interface Class | Interface Class Description | Service Provider | Service | Frequency
Service User
Telemetry FtTITelemetryConfig |Provides for configuring and |TLM RMS At
Configuration adjusting of a telemetry initialization
Proxy process of a
telemetry
process and
upon user
directive
EDOS interface|FtTIEdu Provides EDUs for TLM TLM Every EDU
decommutation
Parameter FoPsClientlF Provides telemetry parameters |TLM TLM Asrequested
Server interface to other RMS by the user
subsystems CMD
FUI
Telemetry FdArTImArchProxy |Archives EDUs DMS TLM At every
Archiver EDU
interface

3.2.3 Telemetry Decommutation Object Model
The telemetry decommutation object model is shown in Figure 3.2-2.

FtTITelemetryConfig class handles configuration requests from the user. This class is a proxy
for the Resource Management System.

FtTIConfigRequest classisthelink class used to carry the information from the FtTIDumpConfig
proxy to the memory dump process.

FtTITelemetryController class is the controller of the telemetry decommutation process. This
class configures the process and initiates the decommutation process.

FoGnTImSourcel F class is the telemetry source interface. This class receives the data and han-
dles the communications layer interface.

FtTIEdu class obtains and verifies the critical information from the EDU. If archiving isenabled,
this class sends the EDUs to be archived by DMS.

FtTIDecom inheritsfrom the FtTIEdu class which inherits from the FoGnTImSourcel F class. This
classiterates over its FtTIPacketMaps searching for the correct map to use for decommutation.

FtTIPacketM ap class contains the maps for the parameters to decommutate. This class iterates
over its FtTIParamMaps searching for the correct map to use to decommutate the parameter.

FtTIContextDepM ap class contains the maps of all of the possible context dependent maps for a
single parameter. Thisclassiterates over its FtTIDecomContextSwitch class searching for the pa-
rameter that is the context dependent switch.

FtTIContextSwitch class compares the high and low values of the context switch parameters to
determine which oneisthe correct switch for the context dependent parameter and checks the qual-
ity of the context switch parameter.

3-5 305-CD-044-001



Figure 3.2-2. Telemetry Decommutation Object Model

FoGnTimSourcelt
T myBuffersize :EcTinG
£ mySteam  :isteam
+ myTimeowmenal  :EcTint
+ mylisenPort :EcTint
+ myBufferPtr  : EcTChar*
+ myDmsEvenPu  : EcTSuing'
1l © myBufer :EcTChar
FiTTTelemetnyContraller e e
Lel ~ myParameterTable - FTIParameterTable GrabBits(oftset, lengn)  : EcTint
FiTTelemetryConfig - myDecom  : FiTiDecom
= myConfigRequest _: FiTIConfigRequest -
FeTIConfigRequest - myConfigRequest  : FtTIConfigRequest
© SendConfgReques(&ContgReques) EcTint
e o) - myRequestType _:EcTEnum T ProcessRequest): EcTvod
- myFiename  : EcTString + initalize) : EcTVoid
- myMode :EcTEnum + Run() :EcTVoid
Proxy for CMS - myPid :EcTERum + Shudown) :EcTVoid
S m md :EcTEnum
ySubsystemid CTEnur FTIEdu
- myDropout : EcTint
- myDerivedUpdateRate  : EcTint Pr——————
myPort : EcTint . myPacketpid : EcTint
- myLimitGroup  : EcTint - myExpectedPacketApid EcTint
- myRangeLimi]  struct - myPacketiength : EcTint
- myEUType :EcTim myExpectedpacketlength ¢ EcTInt 1
- myEUConversion  : EcTint - myPacketscTime  : EcTChar
- myEUCoefiients]  : EcTFloat T mynmchiverisg | EcTint FAATImALGHProRy
- myHeaderFlag EcTint
T Receve) :Ecvod
+ send() :int
+ GetRequestType)  : EcTEnum + GetCriicallno) _+ EcTint PP
+  GefFilename()  : EcTSting + ReceveData)  :EcTint 0
+ GeiMode) : EcTEnum 4 Verity) : Ectint
+ Geridg  : EcTENum + GrabPackeiDataBits(ofset length) EcTint
+ GetSubsystemid) :EcTEnum + SewrchiveFlag(nArchiveFlag) EcTVoid
+  GetDropout() EcTint +  GetArchiveFlag()  : EcTint
+  GetDerivedupdateRate() EcTint +  SetHeaderFlag(inHeaderFlag) EcTVoid
+ Gewon) : EcTint + Geteaderflag)  :EcTint
+  GetlimitGroup)  :EcTint
+ GeDirectin() EcTENum lal
+ Gerype) :EcTint FeTiDecom
+ Gewalue) :<ype>
+ Getzutypey :EcTint T myNomPacketap : EcTint
+  GetEUConversion() EcTint - myPacketMap FtTIPacketMap*
+  GetEUCoefficients() EcTFloat*
+ Decom(const &inParameterTable) EcTint
+  WriteDatabase(char *Filename) < EcTVoid
+  ReadDatabase(char *Filename) EcTVoid
FiTPacketap
T myparamvap : FTiParamMap
- myEdu :ATIEuS
- myParameterTable  : FTIParameterTable:
- myNumPacketParams  : EcTint
+ Decom(const &myEdu, const &myParameterTable) EcTint
Isl
FiTlParameterTable
 mystaus - EeTinc Il
+ ReadDatabase(*Filename) EcTVoid FiTlParamMap
+  WriteDatabase(*Filename) EcTVoid T yEdu FTIEduE
+  GetActiveflag(inPid)  : EcTint - myParameterTable  : FtTIParameterTable&
+ SeiQualiy(oPid, inQually)  : EcTVoid
+ GeQually(nPid)  :EcTLong "+ Decom(const &myEdy +EcTvaid
+ GetConvertedvalue(nPid) EcTDouble
+ GetDecodedValue(inPid) : EcTLong Ial
+ GetRawvalue(nPid)  : EcTLong P r——
+  Update(inPid, inRawValue) EcTVoid
+  GetCurrentValue(inContextPid) EcTFloat myCurrentValue EcTDouble
4 Seimits(Pi, Groupld, Type) : FiTiimis - myConexPid :EcTint
- myloValue EcTDouble
A T
- “myContexPl  : FeTlParameter
+ Compare(Type) _: EcTBookean
+ Compare(sComexiQualiy)  :EcTint
update by FiTIContextDepMap
- myNumSwitches EcTint
. FiTiecomGontextswitch
" Decom(const &myEdu, const &myParameterTable) Eerin
Il
FTIRawMap
- myPid :EcTint FtTIDecomContextSwitch
- myRawvae :EcTLong
- myTagetParameter  : EcTLong R
oy Fimic - myParameterTable  : FTiparameterTable
determined
- myFrsgit : EcTIn [ deemined 1 nyramniap < Frivauatap
- myFirstBitOffset  : EcTint
 Decom(const &inEdy, const &inParameterTable) EeTinG
Decom(const &Edu, &myParameterTable) EcTint
+ GePid) :EcTint
| 18
FiTIComponenap
T mySourceBiOfiser _: EcTint
- mySourceBitLength EcTint
- myTargetBitOffset EcTint
T Decom(@myEdu, &myTargetParameter) EeTvo
+ GetFisBiONset)  EcTint

305-CD-044-001



FtTIDecomContextSwitch classinherits from FtTIContextSwitch. Oncethe switch isfound, the
FtTIRawMap can be determined.

FtTIRawM ap classiterates over its FtTIComponentM aps searching for the correct placein thetar-
get parameter for each component.

FtTIComponentM ap class usesthe bit offset and the bit length to determine the correct placement
of each hit that makes up the parameter. Once the target parameter isfilled FtTIParameterTableis
updated.

The parameter table object model is shown in Figure 3.2-3.

FtTIParameter Table classis atable that holds all of the telemetry parameters. It has the ability
to update different values of the parameter.

FtTIParameterValuesclass contains al of the values of each parameter that is sent to the param-
eter server. This class has the ability to retreive each of the values.

FtTIStatus classrepresents al of the statuses of a parameter. This classis sent along with the Ft-
TIParameterValues to the parameter server.

FtTIParameter class represents the different kinds of parameters. A parameter can be analog or
discrete. Thisclasshastheability to retreivethe values of therangelimits. It can also set the range
limit values and the delta limit values. Selective decommutation for a single parameter is set in
this class.

FtTIDecode class determines the decoded value of the parameter.

FtTIDetalL imit class has the delta limit value and checks if the parameter's value has exceeded
the deltalimit. The deltalimit value can also be set in this class.

FtTIDiscretePar am class represents a discrete parameter. Discrete parameters can be range limit
checked and may be context dependent.

FtTIAnalogParam class represents aanalog parameter. Analog parameters can be EU converted,
range limit checked, and may be context dependent. The EU conversion type and the range limit
set can be selected by the user.

FtTIConversionSet class represents the conversion sets defined for aparameter. There can be up
to four EU conversions defined for each parameter. The current EU conversion can be

selected by the user. FtTIConversionSet iterates over its FtTIEuConversions searching for the al-
gorithm that is selected. 1f no algorithm is selected, the FtTIParameterContextSwitch is consulted
to determine the correct algorithm to use.

FtTIParameter ContextSwitch class inherits from FtTIContextSwitch. The FtTIParameterCon-
textSwitch is used to determine the HTILimitSet or the FtTIConversionSet to use if oneis not al-
ready defined or selected by the user.

FtTIPolyConversion class is the polynomial conversion class. This class uses the polynomial
eguation to EU convert the parameter's decoded value.

FtTIExponentialConversion classis the exponential conversion class. This class uses the expo-
nential conversion equation to EU convert the parameter's decoded val ue.

3-7 305-CD-044-001



RwHashDictionary.

jed by

FiTMelemelryController

" myParameterTable: FiTIParameterTable

- myperiedTelemetnap FUTDeredTelemetyhiap

-
FeTiStatus
T TmyStas: EoT
D mierye StsType
T SenStas Type, TS ESTVod |
. EcTChar FiTIParameterTable
RwCollctable
- myStatus: EcTint
T peadbaabese Frare EcTvg
+ WiiteDatabase(*Filename) EcTVoid
+ Gethctvefiag(inPic
o oA I asity ETVOid
FiTParametervalues + GeQualtynpi ETLong
TP EeTi + GelDecodedalue(nPid) EcTLong
T yRavvaiue. EcTLon + GetRawValue(nPid) E
- myDecodedvalue: EcTDouble + Updatenpi, neawval Eervoi
: Toouble L G CimambmComedmETFoat boun
- *myMnemonic: EcTChar & SetLimits(Pid, Groupld, Type FiTILimits
- myFirsiBitOffset: EcTint
mySius: s ™
yQually : EcTLong
S Eeriong
T GeRawvalue(: EcTLong
- + GelDecodedValue(; EcTDouble - mybecom; FiTiDecom
+ GetConvertedalue() EcTDouble .
e T myConfigRequest. FTIConfigReques
— i EcTLong T ProcessRequesi(y EcTVaid
i — - + ntalze):Ecrvon
© myStaws: EcTCH N
© mySensecoumt et e — * S Eorvu
mySenselnterval: EcTint
TG emorcLengh -TEeToha
= Creck) EcTint - myDecomFag: E
L yRcieran ot
- myStaticToggle: EcTint
- myNumberOValues EcTint
* myValuesServedFiag EcTint
+ GetActiveFlag(): ECTin -
+  SetActiveFlag(inFlagValue) EcTVoid
+ GelDecomFlag(: EcTint
- + SetDecomFlag(inFlagValue) EcTVoid E
+ SetVauesServedFlaginFlogValue)EcTVoid .
Fbecode + Update(inRawalue} E
M nalevame(mDecmedVa\uejv\nua\ EcTvoid T
T TyDecodedvalues EcTLong + SeDecodevalie) & +
. oo .
 Decode(nRawValue) virtual EsTVou S
N nunliyy EeTvoid +
+ DecodeValue(: EcTLong + SelectDecom(Mode} EcTVoid
+ SetDeftalimifValue} EcTVoid
+ Sawimis(Groupid, Ty, Dircion,VaueE<Tvoid
o + Getlimits(Groupid, Type) FITILimits

parameter server by

FoPsClientlF

myAddress ring
myParameterTable: RWHashDictionary

RWCST

RegterClent(Gi Adiress Mode,PULSIECTI
Updatef fer) Ec

UnregisterClient(Cid) EcTVoid
Updatelnterests(Cid, PidList) EcTint

Parameters(PidBuffe

FiTiLimis

FiTIPolyConversion

~ myvalue: <Type>
- myStatus: ECTString
- myLimitType: EcTString

“myNewCoefficients: EcTFioat
*myCoefficients: EcTFloal

- myHivalue: <Type>
- myLoValue: <Type>

T

Check(myValue): EcTSiring

AGUSCuTanCosTcent( e OB s sEe Vo
SetCoefficient(Coefiicient, Value) Ec’
Convert(inDecodedvalue, S SoReTDOuble

SefLovalue(Value). ECTVoid

T
+  AdjustBoundaryGroup() ECTVoid
+ SetHiValue(Value) EcTVoid

FiTiLineSegment
XL EcTFIoal

myActiveFlag: EcTint
mySlope : EcTFloat
myinercept: EcToar
myDecoded!
myculremsegmemﬂag e

ComputeSlopelntercept() Ecl’vmd
Check(inDecodedValue)
Convert(inDecodedVale) L

Figure 3.2-3. Parameter Table Object Model

305-CD-044-001

=
FLimiser
T ySiats: StasType
* &myCurrenGroup: Type
* “myBoundaryGroups Type
* myMaxGroups: ECTint
 Getlmits(Groupid, LimitType) FITILmts
+  SetLimits(Groupld, LimitType, Direction, ValueEcTVoid
+ AdustBoundaryGroup(€inNewEoundaryGroupType.
+  SelectBoundaryGroup(&inSelectedGroup)Type
+ Check(nValue, myLimiStauus)EcTint
0 -
FiTiDiscreteparam
T &myLimitSet. FTILmiSet ]
* myLimiStatus: StasT, pere—
+  &myDeltaLimit: FtTIDekaLimit onversionSet
+ “myDehaStauus: EcTChar T Comer FTECoveror]
, rS
+  Updatevalue(inDecodedValue) virtual EQTVoid - myMaXCDWeIS\OHS EcT\m
. EcTFloat
- myCunver\eavalug EcTDouble
 SeleciCureniConversion(EnSeleciedComversIargeTVod
= +  AdjustCurrentCoefficients(*inNewCoefficientsEcTFloat
+ Converi(inDecodedValue, &inEuStatusyirual EcTDouble
FiTiComextSwich + SelectConversion(Conversionid EcTVoid
: Coeffcent,
T myCurentValue: EcTDoUDE
- myContextPid: EcTint
* myLovalve: EcTDouble
~ myHValue: EcTDouble
- *myContextPtr: FtTIParameter switched by
+ Compare(Type): EcTBoolean [~}
+ Compare(&ContextQualty) EcTint
» FiAnalogParam
- T TyEValue EcTDowe
© myEuStatus: EcTChar
4 FiTiEuConversion * myDefaStatus: EcTChart
_ © myLimiStats: StawsT,
] - e T comextSwitch - amyConversionset FiTIConversionSet
FBoundaryG
oundanyGrove FTiParametercomextSwitch myEuvalue: EcTDouble = UpdateValue(inDecodedValue)virtual ETVoid
- myStatus: EcTString - myStatus: EcTint +  GetConversion(Conversionid) FtTIEuConversion
- myValu T myStatus: ECTInt - EcTFloat +  SelectConversion(Conversionid) ECTVoid
~ myContextSuitch: FUTIContexiSwitch<Type> _ o+ s icent i
State: ECTStrir +  Compare(): EcTint + i
T muneniiate EcTSiing 1 Comermbecodovalon &mgusmusm..a.Ec.m.,.e
e Eertme & SetCoeffcien(Coeffiient, Value)uirual Ectvo
© myResul: EcTint
mySenselnterval: EcTint
mySenseCount EcTint
+ Adluslsmmﬂar\/GmuD(&newBoundaﬂmeuD’yW
+  FindGroup(): Ec
1 GolCuronais) Eersuing
+ Get thmnS(menT‘/Del FxTI ILimits
! SemismiTye, Decion Vaoervod
+ k(myValue, &inLimitStatus) Tyy
[ ] -
FiTiExponentialConversion FiTiLineConversion
e T yCamenLneSegment ST
* “myNewCoeffcients: EcTFioat ~ myLineSegments: FTILineSegment*
“*myCoeffients: EcTFloat
T g i
+ SetCoeffcieni(Coeffcent, Value) Ectvoid
+ Conven(inDecodedValue, &inEuStatuSECTDouble




FtTILineConversion classis the line conversion class. This class iterates over its FtTILineSeg-
ments searching for the correct segment to use to determine the line conversion to use to EU con-
vert the decoded value.

FtTILineSegment class represents one line segment that can be used to EU convert the decoded
value.

FtTILimitSet classrepresentsthe limit setsthat are defined for a parameter'srange limit checking.
If a particular FtTILimitSet is not defined for the parameter, the parameter's FtTIParameterCon-
textSwitch is consulted to determine the correct FtTILimitSet to use. FtTILimitSet contains up to
four FtTIBoundaryGroups that can be defined for each parameter.

FtTIBoundaryGroup classrepresents aboundary group. FtTIBoundaryGroup iteratesover its Ft-
TILimits checking the range limits.

FtTILimits class contains the high and low range limit values that are used to determine if a pa-
rameter's value has violated the range limits. This class aso allows the user to set the range limit
values.

The Derived Telemetry object model is shown in Figure 3.2-4.

FtTIDerivedTelemetryM ap class contains FtTIEquationsthat are used to cal culate derived telem-
etry parameter values.

FtTIEquation class contains FtTIElements that represents the equation that is used to derive a pa-
rameter.

FtTIElement classis an abstract base class that represents all of the possible parts of an equation.
FtTIParamOperand classis the operand of the equation for the derived parameter.
FtTIConstant class represents a constant in an equation for the derived parameter.
FtTIOperator class represents the operator for the equation of the derived parameter.
FtTIAdd class represents the arithmetic addition operator.

FtTIArcCos class represents the arithmetic arc cosine function.

FtTINegate class the arithmetic unary minus operator.

FtTIArcSin class represents the arithmetic arcsine function.

FtTIGreater Or Equal class represents the logical greater than or equal to operator.
FtTISubtract class represents the arithmetic subtraction operator.

FtTIMultiply class represents the arithmetic multiplication operator.

FtTIDivide class represents the arithmetic division operator.

FtTIEqual class represents the logical equality operator.

FtTINotEqual class represents the logical inequality operator.

FtTIGreater class represents the logical greater than operator.

FtTITan class represents the arithmetic tangent function.

FtTIArcTan class represents the arithmetic arctangent function.

FtTICos class represents the arithmetic cosine function.

3-9 305-CD-044-001



w
o
¢
0O
¢
E
o
=

FiTTelemetryController

FiTiDerivedTelemetryMap
eterTable
TyEquaions
M: [DerivedTelemet Ma? myCurrentTime
myConiigRecquesk{TIConfjReque nables/
[+ ProcessRequestECTVoWd | Update GetRate(Pid)
+ Initialize(y EcTVoid Decom()
7 Rung E4Tvod SetDerived(Pid, Rate)
+  Shutdown() EcTVoid Initialize()
il
FITIEquation -l
T T Filiparameter
L el Eetin - T ET
* myUpdatelntervaEcTint ot
: - gECTint
+ myNextUpdateTmcTint e TcabeecTnt
— e ~ myNumberOfValuegcTint
1 R ConenTmeEeTint - myValuesServedFlagcTint
+ Calculate(WorkspacePtcTfint - m
| Syl -
+ GetDecomFiagOEcTin
+ SeiNexUpdae(EcTvod © SobecomFiaginFiagyaue:Tvoi
IsEnabled() EcTint +  SetValuesServedFlag(inFlagValigTVoid
+  Update(inRawValueFcTVoid
+ UpdateValue(inDecodedValueltual ECTVAid
+  SetDecodeValue{EcTVoid
+ ConvertValue()EcTDouble
& SerQualy(inQuaityEcTVoid
+  SelectDecom(ModeEcTVoid
+ SetDeltaLimit(ValueEcTVoid
% SetLimits(Groupid, Type, Directon, VaefVoid
+  GetLimits(Groupld, TypéjtTILimits
ol
FiTiElement
- myQuality. EcTInt
* myvalue EcTFioat
T TablePujal EcTVoid
& CheckGQualiyOinual EcTint
+ Operate(WorkSpacePiirtual EfTInt
Gives value
a lity:
- sl ol
FeTiOperator FtTIConstant FtTIParamOperand
yValie ECTRIoN
myQuality EcTint - myQuality. EcTint - myPid: EcTInt
* myValue EcTFioat —
T CheckQualtyDECTInt + CheckQualtyECTIn - myQualty EcTint
+  Operate(WorkspacePtficfint +  Operate(WorkspaceP1gicfint yQualty
* a
+ Operate(WorkspacePiBeTInt
& CheckQualiyecTint
il ol ol ol sl il | il il | il il
FtTINegate FtTIArcSin FTIAdd FtTIMultiply FiTIEqual FtTIGreater FtTITan FtTICos FTIOr FtTILessOrEqual
- myQuality EcTInt - myQuality. EcTInt ‘myQuality. EcTInt - myQuality. EcTInt - myQuality. ECTInt - myQuality. EcTInt - myQuality. EcTInt - myQuality. EcTInt - myQuality EcTInt - myQuality EcTint
+  Operate(WorkspacePtcTInt +  CheckQuality()EcTInt +  CheckQuality()EcTInt +  CheckQuality EcTInt +  CheckQuality EcTInt +  CheckQuality EcTInt +  CheckQuality EcTInt +  CheckQuality()1 +  CheckQuality()EcTInt +  CheckQuality()EcTInt
+ CheckQuality(EcTint + + + + + + Operate( + Operate( + Operate(W Operate(WorkSpacePtgcTnt|
_J _J _J _J -l _J _J _J _J _J
FirlAnd FiTiGreaterOrEqual FiriSubiract FiTiDivide FiTiNotEqual FiTlAreCos FiTlArcTan FiTiLess Firisin FeTiNot
yQualty EsTint ~yQualiy EsTint Ty Qualty ESTInT Ty Qualty ESTnT Ty Qualty EcTint Ty Qualty EcTint Ty Qualty EcTint Ty Qualiy EcTint Ty Qualiy EcTint yQualiy EsTint
[+ ChecxauamygesTint | [+ ChecquamygeeTint | T CheckQualiyDESTIt [+ CheouanypecTnt | [ CheoquamypEeTt | [+ CheskquamgEsTnt | [+ CheckauamgesTint | [+ CheckauamgEsTint | [+ CheauampEsT_| T CheckQuallyDESTInG
: M i v : T o g 1o : v

Figure 3.2-4. Derived Telemetry Object Model




FtTIL ess class represents the less than operator.

FtTIOr class represents the logical OR operator.

FtTISin class represents the arithmetic sine function.

FtTILessOr Equal class represents the logical less than or equal to operator.
FtTINot class representsthe logical NOT operator

3.2.4 Telemetry Decommutation Dynamic Model

The telemetry subsystem is dynamically modeled through scenarios and event trace diagrams de-
picting the sequence of events to process spacecraft and instrument telemetry. Scenarios for the
telemetry subsystem model nominal sequences of events to ingest telemetry dataand decommu-
tate parameters from the telemetry. The following scenarios are described in this section:

Decommutate an EDU
Telemetry Derived Parameters
Request to Adjust Limits
Telemetry Dropout

Parameter Updating
Parameter Server Processing

3.2.4.1 Decommutate an EDU Scenario

3.2.4.1.1 Decommutate an EDU Scenario Abstract

The purpose of the decommutate an EDU scenario is to describe the process of building and up-
dating parameters from decommuted telemetry EDUSs that are received from the EDOS interface.
The event trace for this scenario can be found in Figure 3.2-5.

3.2.4.1.2 Decommutate an EDU Summary Information

Interfaces:
Edos Interface
Stimulus:
FTIEdu receives EDU data from the EDOS interface.
Desired Response:
Parameters are built and updated from decommutated telemetry.
Pre-Conditions:

The Telemetry Subsystem is configured to accept telemetry EDUs of a particular format
from EDOS.

Post-Conditions:
The Telemetry Subsystem is ready to receive additional EDUSs.

311 305-CD-044-001



(A

T00-770-AD-S0E

FtTIDecomController

Data

FtTIDecom

FtTIPacketMap FtTIContextDepMap FtTIDecomContextSwitch

heck C

ontext

heck C

FtTIRawMap

FtTIComponentMap

FtTIParameterTable

Update

Figure 3.2-5. Decommutate an EDU Event Trace




3.2.4.1.3 Decommutate an EDU Scenario Description

FtTIDecomController initiates the storage and decommutation of atelemetry EDU. FTIEdu ex-
tracts the EDU header fields.The packet APID, length, and sequence count are verified. Next, Ft-
TIDecom initiates the extraction and decommutation of the packet data fields using
FtTIPacketMap. FtTIDecom uses information from FTIEdu to extract the needed bits from the
telemetry stream. When a component is context dependent, FtTIContextDepMap initiates the op-
eration which performs the association between the context switched component position and a
particular component. If itisdetermined that context is dependent upon the value of an associated
discrete, the switch value is compared to the value of the associated discrete within FtTICon-
textSwitch until amatch isfound. When amatch isfound, the proper FtTIRawMap is called upon
to extract the needed bits from the telemetry stream. FtTIRawMap is consulted again for the next
component position for the next component to be extracted. FtTIRawMap is asked to assemble a
parameter's raw value when all the telemetry information gathering for a given parameter is com-
plete. FtTIParameterTable is called to update the parameter. These events are repeated for each
component needed to build each parameter.

3.2.4.2 Select Subsystem Decommutation Mode Scenario

3.2.4.2.1 Select Subsystem Decommutation Mode Scenario Abstract

This scenario describes how to select the mode in a decommutation process. The event trace for
this scenario can be found in Figure 3.2-6.

3.2.4.2.2 Select Subsystem Decommutation Mode Summary Information
Interfaces:

RMS
Stimulus:

This scenario occurs when an active decom process is started, or by user directive.
Desired Response:

All parameters within a Subsystem will be decommutated.
Pre-Conditions:

None.
Post-Conditions:

None.

3.2.4.2.3 Select Subsystem Decommutation Mode Scenario Description

FtTITelemetryConfig sends a FtTIConfigRequest to FtTITelemetryController requesting that de-
commutation mode be set within a specified subsystem. FtTITelemetryController calls FtTIConf-
igRequest to receive therequest. FtTITelemetryController then calls FtTIConfigRequest to get the
request type. When thetypeisto set the telemetry decommutation mode, FtTITelemetryController
calls FtTIConfigRequest to get the decommutation mode. FtTITelemetryController then cals Ft-
TIParameterTable to get the FtTIParameter. FtTITelemetryController then calls FtTIParameter to

3-13 305-CD-044-001



v1i-€

T00-770-AD-S0E

FtTITelemetryConfig

FtTITelemetryController

configuration request >

available

————receive request———>>
<&———request received——

————qget request type———>>

<&——request type——

———get limit request type——>>

<&——Iimit request type——

FtTIConfigRequest

FtTIParameterTable

FtTIParameter

———get decom mode——>>
<<———decom mode———
ﬁ
get pargmeter. >>
<< pargmeter.
get subsystem id >>
for
eau:ht << subsystem id
parameter
set decom mode >>
<< mode set:

status

Figure 3.2-6. Select Subsystem Decommutation Mode Event Trace




get the subsystem id of that parameter. If the subsystemid isthe same as the requested subsystem
id, then FtTITelemetryController calls FtTIParameter to set the telemetry decommutation mode.
When FtTIParameter is finished, FtTITelemetryController returnsto an idle state.

3.2.4.3 Turn Archiving Mode On Scenario

3.2.4.3.1 Turn Archiving Mode On Scenario Abstract

This scenario describes how archiving mode is turned on in a decommutation process. The event
trace for this scenario is shown in Figure 3.2-7.

3.2.4.3.2 Turn Archiving Mode On Scenario Summary Information

Interfaces:

RMS
Stimulus:

This scenario occurs when an active decommutation processis started, or by user directive
Desired Response:

All telemetry received by the decommutation processisforwarded to the archiving process.
Pre-Conditions:

None
Post-Conditions:

None

3.2.4.3.3 Turn Archiving Mode On Scenario Description

FtTITelemetryConfig sends a FtTIConfigRequest to FtTITelemetryController requesting that ar-
chiving beturned on. FtTITelemetryController calls FtTIConfigRequest to receive therequest. Ft-
TITelemetryController then calls FtTIConfigRequest to get the request type. When the typeisto
modify archiving, FtTITelemetryController calls FtTIConfigRequest to get the archiving mode.
FtTITelemetryController then calls FtTIDecom to set its archiving mode to the indicated mode.
When this mode is ON, the archiving is turned on. When FtTIDecom is finished, FtTITelemetry-
Controller returnsto an idle state.

3.2.4.4 Read a Database Scenario

3.2.4.4.1 Read a Database Scenario Abstract

This scenario describes how a decommutation process reads in adatabase. The event trace for this
scenario is shown in Figure 3.2-8.

3.2.4.4.2 Read a Database Scenario Summary Information

Interfaces:
RMS
Stimulus:
This scenario occurs when the decommutation process is started, or by user directive

3-15 305-CD-044-001



oT-€

T00-770-AD-S0E

FtTITelemetryConfig FtTITelemetryController FtTIConfigRequest

configuration request >
available

——  receive request ———>>
l<<—— request received ——

——— get request type ——>>
<<——request type ———
—— get archive mode ——>>

<<— archive mode ————

set archivg flag on

FtTIDecom

<< archive flag set

<< status

Figure 3.2-7. Turn Archiving Mode On Event Trace




LT-€

T00-770-AD-S0E

FtTITelemetryConfig

configuration request
available

<< status

FtTITelemetryController

Ba—

————receive request———>>|
<€&———request received——

————get request type ——>>|

l<&<——request type——

get database file name——=>

<<——database file name

read decg

from dat

<& decom map

read

FtTIConfigRequest

m map >

abase

FtTIDecom

Hatabase read

parameter information from databa

parameter information read

FtTIParameterTable

bEC

Figure 3.2-8. Read a Database Event Trace




Desired Response:

A new database is loaded into the decommutation process.
Pre-Conditions:

Not in the middle of a decommutation session.
Post-Conditions:

None

3.2.4.4.3 Read a Database Scenario Description

FtTITelemetryConfig sendsaFtTIConfigRequest to FtTITelemetryController requesting anew da-
tabase to beread in. FtTITelemetryController calls FtTIConfigRequest to receive the request. Ft-
TITelemetryController then calls FtTIConfigRequest to get the request type. When the type isto
read in a new database FtTITelemetryController calls FtTIConfigRequest to get the database file
name. FtTITelemetryController then calls FtTIDecom, telling it to read in the decommutation
maps from the indicated database. When FtTIDecom isfinished reading, FtTITelemetryController
calls FtTIParameterTable to read in the parameter information from the database. When FtTIPa-
rameterTableisfinished FtTITelemetryController returnsto an idle state.

3.2.4.5 Telemetry Derived Parameters Scenario

3.2.4.5.1 Telemetry Derived Parameters Scenario Abstract

The purpose of the telemetry derived parameters scenario is to describe the process by which a pa-
rameter is updated with a calculated derived telemetry value. The event trace for this scenario can
be found in Figure 3.2-9.

3.2.4.5.2 Telemetry Derived Parameters Summary Information

Interfaces:
No External Interfaces
Stimulus:
An EDU has been fully decommutated.
Desired Response:
FtTIParameterTable will contain a calculated derived telemetry value.
Pre-Conditions:

All EDU telemetry samples have been decommutated and the packet's spacecraft time
stamp isavailable.

Post-Conditions:
Updated derived parameter values are put into the parameter table.

3-18 305-CD-044-001



6T-€

T00-770-AD-S0E

FtTITelemetryConfig

available

configuration request >

FtTITelemetryController

————receive request———>>|
<€&———request received——

————get request type ——>>|

l<&<——request type——

get database file name——=>|

<<——database file name

<< decom map

FtTIConfigRequest

read decg
from dat

read

m map >

abase

FtTIDecom

Hatabase read

parameter information from databa

<< status

Figure 3.2-9. Telemetry Derived Parameters Event Trace

parameter information read

FtTIParameterTable

bEC




3.2.4.5.3 Telemetry Derived Parameters Scenario Description

FtTIDecomController initiates processing of the derived telemetry parameters that are constructed
using downlink telemetry and predefined constant information. FtTIDerivedTelemetryMap
checks if a FtTIEquation is enabled. If the FtTIEquation is enabled, FtTIDerivedTelemetryMap
checks if the FtTIEquation is due for update. By comparing the current time with the equation’s
next update time, FtTIEquation determines whether the equation isto be calculated and sends are-
sponse to FTIDerivedTelemetryMap. When FtTIDerivedTelemetryMap receives confirmation,
FtTIEquation verifies if each FtTIParamOperand is of good quality. If the FtTIParamOperand is
good, FtTIEquation uses the operate member function of each FtTIElement to calculate the equa-
tions and update FtTIParameter. FtTIParameter contains the calculated derived telemetry value
and indicates when the calculation is complete. These events are repeated for subsequent equa-
tions.

3.2.4.6 Set Polynomial Coefficients for EU Conversion Scenario

3.2.4.6.1 Set Polynomial Coefficients for EU Conversion Scenario Abstract

This scenario describes how to set the engineering unit conversion algorithm coefficientsin a de-
commutation process. The event trace for this scenario is shown in Figure 3.2-10.

3.2.4.6.2 Set Polynomial Coefficients for EU Conversion Summary Information

Interfaces:

Resource Management.
Stimulus:

By user directive.
Desired Response:

The coefficients in the indicated engineering unit conversion algorithm will be replaced
with anew set of coefficients.

Pre-Conditions:
None

Post-Conditions:
None

3-20 305-CD-044-001



T¢-€

T00-770-AD-S0E

FtTITelemetryConfig FtTITelemetryController FtTIConfigRequest FtTIParameterTable FtTlAnalogParam FtTIConversionSet FtTIPolyConversion
Configuration
request
available
receive
request
request
<< received
get request
type >
<< quest typ
get Pid———>>
<< Pid-
get typ
<< typ
get parg
<< parar
>
>>
get f informatiol
3 1t information
t conversion coefficient:
set conversion >
for each coefficients
coefficient
[———set coefficient————>>
[<&—coefficient set——————
<< efficients set
3 dont
< tat
<<

Figure 3.2-10. Set Polynomial Coefficients for EU Conversion Event Trace



3.2.4.6.3 Set Polynomial Coefficients for EU Conversion Scenario Description

FtTITelemetryConfig sends a FtTIConfigRequest to FtTITelemetryController requesting that the
engineering unit conversion algorithm coefficients be set for a specified algorithm. FtTITeleme-
tryController calls FtTIConfigRequest to receive the request. FtTITelemetryController then calls
FtTIConfigRequest to get the request type. When the type is to change the EU conversion coeffi-
cients, FtTITelemetryController calls FtTIConfigRequest to get the Pid of the parameter whose co-
efficient we want to change. FtTITelemetryController then calls FtTIParameterTable to get the
FtTIAnalogParam. For each coefficient that isto be changed, FtTITelemetryController calls FtTI-
ConfigRequest to get the Conversionld, the Coefficientld and the CoefficientValue, then calls Ft-
TIAnalogParam to set the conversion coefficients of that parameter. FtTIAnalogParam calls
FtTIConversionSet to set the conversion coefficients. FtTIConversionSet uses the Conversionlid
to determine which EU Conversion algorithm to modify and calls FtTIPolyConversion to set the
coefficient specified in Coefficientld to the value specified in CoefficientValue. When FHTITe-
lemetryController completes looping through each coefficient to be changed, it returnsto an idle
State.

3.2.4.7 Request to Adjust Limits Scenario

3.2.4.7.1 Request to Adjust Limits Scenario Abstract

The purpose of the Request to Adjust Limits Scenario isto describe the process by which arequest
to update range limitsis handled. The event trace for this scenario can be found in Figure 3.2-11.

3.2.4.7.2 Request to Adjust Limits Summary Information

Interfaces:
Resource Management.
Stimulus:
By user directive.
Desired Response:
The range limits indicated will be replaced with anew set of coefficients.
Pre-Conditions:
None
Post-Conditions:
None

3-22 305-CD-044-001



€€

T00-770-AD-S0E

FtTITelemetryConfig FtTITelemetryController FtTIConfigRequest
Configuration
request >> receive
available request >>
< request
received
get request
type >
<< quest type
get Pid >>f
<< Pid
get type—————>>
<<———type
get pargmeter ——98 —— M >
<< pargmeter
get limit information ——=>f
(<&——Ilimit information:
et new limit value:
<< don
<<

FtTIParameterTable

FtTIParameter

FtTILimitSet

(<&——Ilimits set——————

set limits ———>>

[<&—limits set

FtTIBoundaryGroup FtTILimits

set limits ———=>
[<&—limits set

Figure 3.2-11. Request to Adjust Limits Event Trace




3.2.4.7.3 Request to Adjust Limits Scenario Description

FtTITelemetryConfig sends a FtTIConfigRequest to FtTITelemetryController requesting that the
range limits be adjusted for a specified parameter. FtTITelemetryController calls FtTIConfigRe-
quest to receive the request. FtTITelemetryController then calls FtTIConfigRequest to get the re-
guest type. When the type is to adjust parameter range limits, FtTITelemetryController calls
FtTIConfigRequest to get the Pid of the parameter whose limits we want to change, and also to get
the type of limit request thisis. FtTITelemetryController then calls FtTIParameterTable to get the
FtTIParameter indicated by the Pid. When the type of limit request is range limits, then for each
range limit that is to be changed, FtTITelemetryController cals FtTIConfigRequest to get the
Groupld, RangeLimitType, LimitDirection and the new LimitValue, then calls FtTIParameter to
set the limits using these new values. FtTIParameter calls FtTILimitSet to set the limits. FtTILim-
itSet uses the Groupld to determine which boundary group to use and calls FtTIBoundaryGroup to
set the limits. FtTIBoundaryGroup uses the direction to determine if thisis ahigh or low value to
be set and it uses the RangeLimitType to determine the type of limit (i.e. Red, Yellow, etc.) and
then calls FtTILimits to set the actual value. When each range limit is changed, FtTITelemetry-
Controller returnsto an idle state.

3.2.4.8 Obtain Current Limit Values Scenario

3.2.4.8.1 Obtain Current Limit Values Scenario Abstract

The purpose of this scenario is to describe the process by which a client can obtain the limits of a
given parameter. The event trace for this scenario is shown in Figure 3.2-12.

3.2.4.8.2 Obtain Current Limit Values Scenario Summary Information

Interfaces:

Resource Management.
Stimulus:

A client request to obtain the limits of a given parameter.
Desired Response:

The limits of agiven parameter are obtained.
Pre-Conditions:

None.
Post-Conditions:

None.

3-24 305-CD-044-001



qc€

T00-770-AD-S0E

FtTITelemetryConfig

FtTITelemetryController

Figure 3.2-12. Obtain Current Limit Values Event Trace

o FtTIConfigRequest FtTIParameterTable FtTIParameter FtTILimitSet FtTIBoundaryGroup FtTILimits
Configuration
request > receive
available request >
request
<< received
get request >
type
<& quest typ
get Pid >>
—< i
<< Pid
get group id >>
<& group id
get typ >
<<—type
get limit >
get limit >
et limits ———>>
g get limits ———>>f
<E——limits—————
<&—limits————
<< limi limit;
get high valu >
< high valu
dd to request. >>i
<& don
get low limit >>i
<< low limit
dd to request. >>i
<< don
send >>
<& ent:




3.2.4.8.3 Obtain Current Limit Values Scenario Description

The client sends a directive to the FtTITelemetryController through the FtTITelemetryConfig
proxy object by packaging the directive in a FtTIConfigRequest object. The FtTITelemetryCon-
troller receives the FtTIConfigRequest object and determines the type. The type is determined to
be a limits directive with the objective to obtain the limits of a given parameter for display. The
FtTITelemetryController calls the GetLimits operation of the FtTIParameterTable. The FtTIPa-
rameterTable then callsits GetParameter to get the parameter whose limits we want to obtain. The
FtTIParameterTable then calls FtTIParameter's GetLimits operation. The FtTIParameter knows of
itslimit sets and then callsthe GetLimits function of FTILimitSet. The FtTILimitSet can then se-
lect the appropriate boundary group and call the GetLimits function of the FtTIBoundaryGroup.
This returns the correct FtTILimits object back to the FtTITelemetryController. The FtTITeleme-
tryController then calls the GetHiVa ue and the GetL oV alue functions of the FtTILimitsto add the
information to the FtTIConfigRequest to be sent back to the client. The decommutation process
goes back to blocking on incoming requests.

3.2.4.9 Parameter Updating Scenario

3.2.4.9.1 Parameter Updating Scenario Abstract

The purpose of the Parameter Updating scenario is to describe the process by which a parameter is
updated with EU converted and limit checked values. The event trace for this scenario can be
found in Figure 3.2-13.

3.2.4.9.2 Parameter Updating Summary Information

Interfaces:

No external interfaces.
Stimulus:

A raw vaue for an FtTIAnalogParam has been decommutated.
Desired Response:

Parameter updating compl etes.
Pre-Conditions:

All parameter raw bits have been extracted and assembled.
Post-Conditions:

A parameter is EU converted, limit checked, and ready to be sent to the users. The
Telemetry Subsystem is ready to process additional parameters.

3-26 305-CD-044-001



LC-€

T00-770-AD-S0E

FtTIRawMap

Figure 3.2-13. Parameter Updating Event Trace

FtTIParameterTable FtTIAnalogParam FtTIDecode  FtTIConversionSet FtTIEuConversion  FtTILimitSet FtTIBoundaryGroup FtTIParameterContextSwitch FtTIContextSwitch FtTILimits
Update ——>>
update ———>>f
- Decode Raw 3>
<&—Done
Conyert >>1 " "
| find coSr:e\{erslon >
<€&——not found
find context >
switch
find context switch >
context switch found

[<&— converted

<< conyerted
check fange limits | find boundary
o group >
[<&— group not found —
find context
switch  —=] find context >
switch
find context
switch >
[<&——— context switch found
check range limits >>
<< doni
<&———done———
<< don
<&——done—
<&——done———




3.2.4.9.3 Parameter Updating Scenario Description

FtTIRawMap gives the raw value to FtTIParameterTable and instructs the object to update. The
updating involves setting the raw value, performing engineering unit conversion and checking lim-
its. FtTIParameterTable instructs FtTIParameter to decode the raw value using FtTIDecode. Ft-
TIAnalogParam instructs FtTIConversionSet to convert theraw value. FtTIConversionSet usesthe
FTIEuConversion objects selected by the user. If none have been selected, each FtTIEuConver-
sion object consults its FtTIParameterContextSwitch. FtTIParameterContextSwitch consults its
FtTIContextSwitch to check if that context switch parameter is of bad quality or is marked static.
If the context switch is of good quality and is not marked static, FtTIContextSwitch compares its
low and high values to an associated FtTIDiscreteParam's value. If the discrete parameter's value
falls in the range between the two context switch values, the associated FtTIEuConversion is se-
lected. Otherwise, the next FtTIEuConversion consults its FtTIParameterContextSwitch until a
conversion is selected. FtTIEuConversion then converts the raw value to an EU value which is
then passed back to the FtTIConversionSet which passes the value to FtTIAnalogParam. Oncethe
conversion has been accomplished, FtTIAnaogParam instructs FtTILimitSet to begin limit check-
ing. Aswith the conversion, FtTILimitSet uses the FtTIBoundaryGroup selected by the user. Not
having found one, each FtTIBoundaryGroup consults its FtTIParameterContextSwitch until a
boundary group is selected. FtTIBoundaryGroup then calls FtTILimits to compare either the raw
or the EU value with values corresponding to various states: rail low, red low, yellow low, yellow
high, red high and rail high. This status is then passed back to FtTIBoundaryGroup. If the status
is an darm or warning state, mySenseCount is incremented. If mySenseCount exceeds my-
Senselnterval, an event message is generated. The statusis then passed back to FtTILimitSet and
then to FtTIAnalogParam. Parameter updating is complete.

3.2.5Telemetry Decommutation Data Dictionary
FAArTImArchProxy - classthat isaproxy from DMS that archives EDUs.

FoGnTImSourcel F - class the initiates initialization of connections through a port. It receives a
data stream, checksfor errors and writes the data to a buffer.

myBuffer - attribute that stores the data.
myBuffer Ptr - attribute that points to the location of the datain the data buffer.
myBuffer Size - attribute that indicates the size of the buffer.
myDmsEventPtr - attribute that points to an event message when an error has occurred.
myL istenPort - attribute that represents the listening port number.
myStream - attribute that represents the data stream.
myTimeoutlnterval - attribute that represents the time interval between data.
GrabBits - operation that extracts bits from the buffer.
RecelveData - operation that fills the buffer with data.

FtTIAdd - this class represents the arithmetic addition operator.
CheckQuality - this member function will check the quality of an operator.
myQuality - this member variable holds the quality information for an operator.

3-28 305-CD-044-001



Operate - this member function will remove two values from a stack and add them
together.

FtTIAnalogParam - class that corresponds to the analog parameter type. Analog parameters may
be engineering unit converted, boundary limit checked and delta limit checked.

ConversionSet - attribute that points to the conversion set associated with the parameter.
GetConversion - operation that returns a conversion.

myConvertedValue - attribute that contains the converted value.

myDeltaStatus - attribute that is the deltalimit check status.

myEuStatus - attribute that holds the current EU conversion status.

myEuUnit - attribute that indicates the units in which the converted value is to be
interpreted.

myEuValue - attribute that holds the current EU converted value of the parameter.

myLimitStatus - attribute that points to the limit set associated with the parameter.

SelectConversion - operation that sets the conversion to use.

SetConversion - operation that configures the conversions.

UpdateValues - operation that updates the parameter value from the decoded value.
FtTIANd - this class represents the logical AND operator.

CheckQuality - this member function will check the quality of an operator.

Operate - this member function will remove two values from a stack and AND them.

myQuality - this member variable holds the quality information for an operator.
FtTIArcCos - this class represents the arithmetic arccosine function.

CheckQuality - this member function will check the quality of an operator.

Operate - this member function will remove a value from a stack and evaluate the
arccosine of that value.

myQuality - this member variable holds the quality information for an operator.
FtTIArcSin - this class represents the arithmetic arcsine function.
CheckQuality - this member function will check the quality of an operator.

Operate - this member function will remove a value from a stack and evaluate the arcsine
of that value.

myQuality - this member variable holds the quality information for an operator.
FtTIArcTan - this class represents the arithmetic arctangent function.

myQuality - this member variable holds the quality information for an operator.

CheckQuality - this member function will check the quality of an operator.

Operate - this member function will remove a value from a stack and evaluate the
arctangent of that value.

FtTIBoundaryGroup - classthat representsalimit boundary group. The boundary group contains
the high and low warning and alarm boundary values.

myRailLimitsFlag - indicates if rail limits are defined for the parameter.

3-29 305-CD-044-001



myContextSwitch - attributethat, if present, provides an association between the boundary
group and a context switch. Context switching is based upon the value of a discrete
parameter.

myCurrentState - attribute that contains the parameter's current limit state.

myL imitSets - attribute that contains an array of limit types.

myLimitState - attribute that contains the type of limit violation that occurred.
myResult- attribute that indicates if a context switch was found for this parameter.

mySensel nterval- attribute that determines how often an out of limits event message is
generated.

mySenseCount - attribute that contains the number of times a parameter has been out of a
specific type of limits.

myStatus - attribute that contains the status of the boundary limit check.
myValue - attribute that contains the value that is being limit checked.
Check - operation that performs the boundary limit check.

FindGroup - operation that finds the boundary group using the context dependent
parameters.

GetCurrentState - operation that returns the current limit state.

GetLimits - operation that returns a set of limits.

SetLimit - operation that sets the limit of a certain type.

AdjustBoundaryGroup - operation that allows the user to adjust the limit values.
FtTIComponentM ap - class that represents the component map. It gets the raw value.

mySour ceBitOffset - attribute that contains the bit offset of the component.

mySour ceBitL ength - attribute that contains the length of the component.

myTargetBitOffset - attribute that contains the offset where the component fits into the
parameter.

Decom - operation that builds the parameter with the components.
GetFirstBitOffset - operation that returns the first bit's offset.

FtTIConfigRequest - class that corresponds to configuration update requests.
myDerivedUpdateRate - attribute that contains the rate of updating derived parameters.
myDr opout - attribute that contains the dropout interval.
myEUCoefficients - attribute that contains the EU coefficients.
myEUConversion - attribute that contains the EU conversion indicator.
myEUType - attribute that contains the EU conversion type.

myFileName - attribute that contains the filename used for a WriteDatabase or ReadData-
base request.

myLimitGroup - attribute that contains the limit group to set.

3-30 305-CD-044-001



myM ode - attribute that contains the on or off mode used for archiving or selective de-
com.

myPid - attribute that contains the parameter identification.

myPort - attribute that contains the input telemetry port.

myRangeL imit - attribute that contains the range limit information.

myRequestType - attribute that contains the type of request.

mySubsystemld - attribute that contains the subsystem identification.

GetDerivedUpdateRate - operation that returns the derived update rate.

GetDirection - operation that returns the range limit direction.

GetDropout - operation that returns the dropout interval.

GetEUCoefficients - operation that returns the EU coefficients.

GetEUConversion - operation that returns the EU conversion.

GetEUType - operation that returns the EU type.

GetFileName - operation that returns the filename.

GetLimitGroup - operation that returns the limit group.

GetM ode - operation that returns the mode.

GetPid - operation that returns the parameter identification.

GetPort - operation that returns the telemetry port.

GetRequest Type - operation that returns the request type.

GetSubsystemld - operation that returns the subsystem identification.

GetType - operation that returns the range limit type.

GetValue - operation that returns the range limit value.

Receive - operation that receives the data from an external interface.
FtTIConstant - this class represents constant values used in FtTIEquations for derived telemetry.

CheckQuality - this member function will check the quality of a constant.

Operate - this member function will place the constant on a stack for equation processing.

myValue - this member variable holds the value of the constant.

myQuality - this member variable holds the quality information for this constant.

FtTIContextDepM ap - class that represents the map used to determine the context switch param-
eter.

myNumSwitches - attribute that contains the parameter's number of switches.
myDecomContextSwitch - attribute that is an array of decommutation context switches.

mySwitchNotFound - attribute that indicates if a context switch was not found for the
parameter.

Decom - operation that initiates the search for the switch mnemonic.
FtTIContextSwitch - class that corresponds to a switch that is used to change the context of an

3-31 305-CD-044-001



associated class. It can be used to alter the context of atelemetry stream position, an EU conver-
sion, or alimit boundary group.

myContextld - attribute that indicates the parameter I D that is used to enable or disablethe
context switch

myContextPtr - attribute that is a pointer to the context parameter.

myL oValue - attribute that represents the minimum value used in determining the context
switch

myHiValue - attribute that represents the maximum value used in determining the context
switch.

myCurrentValue - attribute that represents the current value of the parameter.

Compare - operation that compares its high and low values with the parameter's value to
determine the context switch.

FtTIConversionSet - class that represents the set of EU conversions available to an associated an-
alog parameter.

myConver sions - attribute that contains the list of available EU conversions.

myCurrentConversion - attribute that indicates which EU conversion is currently in use.

myConvertedValue - attribute that contains the EU converted value.

myM axConver sions - attribute that indicates the maximum number of conversions.

myNewCoefficients - attribute that contains the new coefficients entered by the user.

Convert - operation that initiates the raw to EU conversion.

SelectConversion - operation that allows the user to select the active conversion.

SetConversion - operation that sets the conversion coefficients.

AdjustCurrentCoefficients - operation that initiates the adjustment of coefficients.
FtTICos - this class represents the arithmetic cosine function.

CheckQuality - this member function will check the quality of an operator.

Operate - this member function will remove a value from a stack and evaluate the cosine
of that value.

myQuality - this member variable holds the quality information for an operator.

FtTIDecode - abstract class that is used to provide the decoding algorithm.
myDecodeValue - attribute that contains the decoded value.
DecodeValue - operation that retrieves the decoded value.

FtTIDecom - class that represents the telemetry decommutation process
myNumPacketM ap - attribute that indicates the number of packet maps.
myPacketM ap - attribute that is an array of packet maps.

Decom - operation that finds the correct packet map to use.

ReadDatabase - operation that reads into memory the packet maps that are stored in the
file.

3-32 305-CD-044-001



WriteDatabase - operation that writes the current packet maps into thefile.

FtTIDecomContextSwitch - classthat represents a switch that is used to change the context of the
context dependent associated class.

myRawM ap - attribute that indicates the decommutation map to use and is determined by
the context switch.

myEdu - attribute that represents the Edu that will be sent to the decommutation process.

myPar ameter Table - attribute that represent the parameter table that will be sent to the
decommutation process.

Decom - operation that initiates decommutation when the correct context switch is found.
FtTIDetaL imit - class that represents an analog delta limit.

myDelta - attribute representing the maximum change alowed between consecutive
parameter samples.

myPreviousRawValue - attribute that contains the value of the previous sample of the
parameter. Checked against the current value to detect a delta violation.

myStatus - attribute that contains the status of the delta limit check.

mySensel nterval - attribute that represents the current delta-limit sense interval. This
attribute determines how often an event message is generated for a continuous delta-limit
condition.

mySenseCount - attribute that indicates how many times the parameter has consecutively
remained out of limits. This attribute will be compare against the sense interval.

Check - operation that performs the delta limit check.

FtTIDerivedTelemetryMap - this class represents the methods to use when deriving telemetry
values from other telemetry points.

Initialize - this member function will, among other things, initialize a pointer to the
Parameter Table and some other neat initialization things.

Decom - this member function is responsible for initiating the decommutation of derived
telemetry points.

myParameter TablePtr - this member variable points to the parameter table.

myEquations - this member variable points to the equations that are used to derive
telemetry points.

myCurrentTime - thismember variableisthe current timethat is used to check against for
re-assembling equations.

myW or k Space - this member variable is a pointer to the stack for evaluating equations.

FtTIDiscreteParam - class that corresponds to the discrete parameter type. Discrete parameters
may be boundary limit checked and delta limit checked.

myLimitSet - attribute that points to the limit set associated with the parameter.
myL imitStatus - attribute that indicates the range limit status.
myDeltal imit - attribute that points to the delta limits associated with the parameter.

3-33 305-CD-044-001



myDeltaStatus - attribute that indicates the delta limits check status.

UpdateValue - operation that will update that parameter from the raw values.
FtTIDivide - this class represents the arithmetic division operator.

CheckQuality - this member function will check the quality of an operator.

Operate - this member function will remove two values from a stack and divide the first
by the second.

myQuality- this member variable holds the quality information for an operator.

FtTIEdu - classthat represents areceived EDU. It readsthe EDU datafrom EDOS or DM Sinter-
face, and forwards the EDU to be decommed.

myPacketSeqNo - attribute that indicates the sequence number of the packet.
myPacketApid - attribute that indicates the packet identification.

myExpectedPacketApid - attribute that indicates the expected application identification
of the packet.

myPacketL ength - attribute that indicates the length in bytes of the packet.
myExpectedPacketL ength - attribute that indicates the expected packet |ength.
myPacketScTime - attribute that indicates the spacecraft time of the packet.
myHeader Flag - attribute that indicates if archiving is on.

myAr chiveFlag - attribute that indicates if the Edu header in present.

GetCriticallnfo - operation that gets the packer sequence number, the APID, and the
packet spacecraft time.

Verify - operation that checks that the critical information was received.
ReceiveData - operation that gets the Edu.

SetArchiveFlag - operation that sets the archive flag.

GetArchiveFlag - operation that returns the archive flag.

SetHeader Flag - operation that sets the header flag.

GetHeader Flag - operation that returns the header flag.

GrabPacketDataBits - operation that gets the data bits and sets the data pointer to the
location of the source data.

FtTIElement - thisisan abstract base class that represents all of the possible pieces of an equation.
CheckQuality - this member function will check the quality of an element.

Operate - this member function will perform the desired function for the specific type of
element that is instantiated.

I nitialize - this member function will initialize anything that will be needed for a specific
element.

myQuality - this member variable is the quality information for this element.
myValue - this member variable is the value of this element.

3-34 305-CD-044-001



FtTIEqual - this class represents the logical equality operator.
CheckQuality - this member function checks the quality of an operator.
Operate - this member function removes two values from a stack and compare them.
I nitialize - this member function initializes anything that is needed for an element.
myValue - this member variable holds the value of the element.
myQuality - this member variable holds the quality information for an operator.
FtTIEquation - this class represents the equation that is used to derive a parameter.

I sDue - this member function returns a flag that is used to determine whether it istime to
update the parameter associated with the equation.

IsEnabled - this member function returns a flag that is used to determine whether the
decommutation of the parameter associated with an equation is enabled.

Calculate - this member function calculates the value of the parameter that is associated
with an equation.

GetRate - this member function gets the update interval.

SetNextUpdate - this member function sets the next update time for an equation.
SetUpdateRate - this member function sets the update rate for an equation in seconds.
SetEnabledFlag - this member function sets the Enabled flag for an equation.
myEnabledFlag - this member variable flags whether an equation is enabled or not.
myRawValue - this member variable is the raw value of the derived parameter.
myQuality - this member variable contains the quality information for the equation.
myUpdatel nterval - this member variable is the rate of update for the derived parameter.

myNextUpdateTime - thismember variableis used to determine when to update a derived
parameter.

FtTIEuConversion - abstract class that represents an EU conversion.

mySelectedFlag - attribute indicating whether the user has selected the conversion. This
attribute provides a mechanism for the user to lock the conversion. The selected flag
overrides any context dependence conversion switching.

myContextSwitch - attribute that, if present, provides an association between the
conversion and a context switch. Context switching is based upon the value of a discrete
parameter.

myNewCoefficients - attribute that holds the user specified coefficients.
myEuValue - attribute that holds the current EU converted value of the conversion.
myStatus - attribute that indicates the status of the EU conversion process.
Convert - operation that converts the raw value to an EU value.
AjustCurrentCoefficients - operation that initiates the adjustment of coefficients.
SetCoefficient - operation that allows the setting of coefficients.

3-35 305-CD-044-001



FindConversion - operation that finds the conversion using the context dependent
parameters.

FtTIExponentialConversion - class that represents a type of EU conversion. The exponential
conversion uses the following equation:

y=Co+C1e(cX).
myCoefficients- attribute that containsthelist of coefficients used in the calculation of the
EU.
myNewCoefficients - attribute that contains the list of coefficients specified by the user.
Convert - operation that converts the raw value to an EU.
AdjustCurrentCoefficients - operation that adjusts the current coefficients.
SetCoefficient - operation that sets the coefficients.
FtTIGreater - this class represents the logical greater than operator.
CheckQuality - this member function will check the quality of an operator.
Operate - this member function will remove two values from a stack and compare them.
myValue - this member variable holds the value of the element.
myQuality - this member variable holds the quality information for an operator.
FtTIGreater OrEqual - this class represents the logical greater than or equal to operator.
CheckQuality - this member function will check the quality of an operator.
Operate - this member function will remove two values from a stack and compare them.
myQuality - this member variable holds the quality information for an operator.
FtTIL ess - this class represents the |ess than operator.
CheckQuality - this member function will check the quality of an operator.
Operate - this member function will remove two values from a stack and compare them.
myQuality - this member variable holds the quality information for an operator.
FtTILessOr Equal - this class represents the logical |ess than or equal to operator.
CheckQuality - this member function will check the quality of an operator.
Operate - this member function will remove two values from a stack and compare them.
myQuality - this member variable holds the quality information for an operator.
FtTILimitSet - class that represents the set of limits available to an associated analog parameter.
myCurrentGroup - attribute indicating which limit boundary group is currently selected.

mySensel nterval - attribute that represents the current out-of-limits sense interval. This
attribute determines how often an event message is generated for a continuous out-of-limit
condition.

mySenseCount - attribute that indicates how many times the parameter has consecutively
remained out of limits. This attribute will be compare against the sense interval.

myBoundaryGroups - attribute that contains alist of available limit boundary groups.

3-36 305-CD-044-001



myM axGroups - attributes that indicates the maximum number of boundary groups.

myStatus - attributes that indicates the current processing status.

Check - operation that initiates delta and boundary limit checking.

GetLimits - operation that returns a set of limits.

SetLimits - operation that sets the limits for a parameter.

AdjustBoundaryGroup - operation that initiates the adjustment of the limits.

SelectBoundaryGroup - operation that allows the user to select a boundary group.
FtTILimits - class represents the range limit high and low values.

myL oValue- attribute that holds the low limit value.

myHiValue - attribute that holds the high limit value.

myValue - attribute that holds the value that is being limit checked.

myStatus - attribute that holds the type of limit violation that occurred.

myLimitType - attribute that holds the limit type of the class.

Check - operation that checks for limit violations.

SetHiValue- operation that sets the high value for the limits.

SetL oValue - operation that sets the low value for the limits.

AdjustBoundaryGroup - operation that allows the user to adjust the limit range.

FtTILineConversion - class that represents a type of EU conversion. The line conversion uses
linear interpolation of the raw analog parameter value. Up to fifteen contiguous line segments of

increasing value may be associated with the conversion.

myL ineSegments - attribute that contains the list of line segments used in the calculation

of the EU.

myCurrentLineSegment - attribute that indicates the line segment to use for the EU

conversion.
Convert - operation that initiates the raw to line segment EU conversion.

FtTILineSegment - classthat represents aline segment used during the line segment interpolation

process.
myX1 - attribute holding the x coordinate of the start point of the line segment.
myY 1 - attribute holding the y coordinate of the start point of the line segment.
myX2 - attribute holding the x coordinate of the end point of the line segment.
myY 2 - attribute holding the y coordinate of the end point of the lint segment.

myActiveFlag - derived attribute indicating whether the slope and intercept for the line

segment have been previously calculated.

myCurrentSegmentFlag - attribute that indicates the line segment in use for the EU

conversion.
mySlope - attribute representing the calculated slope of the line segment.

3-37 305-CD-044-001



my/l nter cept - attribute representing the calculated y-intercept of the line segment.
myDecodedValue - attribute representing the decoded value to be EU converted.

ComputeSlopel nter cept - operation that calculates the slope and y-intercept of the line
segment if they have not been previously calcul ated.

Convert - operation that calcul ates the raw to line segment EU conversion.

Check - operation that determines the correct line segment to use.
FtTIMultiply - this class represents the arithmetic multiplication operator.

CheckQuality - this member function will check the quality of an operator.

Operate - this member function will remove two vaues from a stack and multiply them
together.

myQuality - this member variable holds the quality information for an operator.
FtTINegate - this class represents the arithmetic unary minus operator.

CheckQuality - this member function will check the quality of an operator.

Operate - thismember function will remove avalue from astack and apply a unary minus.

myQuality - this member variable holds the quality information for an operator.
FtTINot - this class represents the logical NOT operator.

CheckQuality - this member function will check the quality of an operator.

Operate - this member function will remove avalue from a stack and apply aNOT.

myQuality - this member variable holds the quality information for an operator.
FtTINotEqual - this class represents the logical inequality operator.

CheckQuality - this member function will check the quality of an operator.

Oper ate - this member function will remove two values from a stack and compare them.

myQuality - this member variable holds the quality information for an operator.

FtlOperator - thisclassisan abstract class that represents operators used in FtTIEquations for de-
rived telemetry.

CheckQuality - this member function will check the quality.
Operate - this member function will remove a value(s) from a stack and operate on them.
myQuality - this member variable holds the quality information for an operator.

FtTIOr - this class represents the logical OR operator.
CheckQuality - this member function will check the quality of an operator.
Operate - this member function will remove two values from a stack and OR them.
myQuality - this member variable holds the quality information for an operator.

FtTIPacketM ap - classthat represents the packet maps for decom. It begins the processing of pa-
rameter maps.

myParamM ap - attribute that is an array of parameter maps.
myNumPacketParams - attribute that indicates the number of parametersin the packet.

3-38 305-CD-044-001



myEdu - attribute that represents the Edu that will be sent to the decommutation process.

myPar ameter Table - attribute that represents the parameter table that will be sent to the
decommutation process.

Decom - operation that initiates decommutation for the parameter maps.
FtTIParameter - class that maintains the parameter values for a single parameter.
myDecomFlag - attribute that indicates whether this parameter should be decommutated.

myActiveFlag - attribute that indicates whether the parameter is currently active and being
updated. For sampled telemetry, this indicates that the parameter is being decommutated.
For derived telemetry, thisindicates that the parameter is being calculated. In the event of
aloss of data or a data dropout, thisflag is set to reflect a static condition.

myStaticToggle - attribute that indicates if the parameter is static.
myNumber of Values - attribute that indicates the number of values for the parameter.

ValuesSer vedFlag - attribute that indicates the amount of values that have been served for
the parameter.

GetActiveFlag - operation that retrieves the active flag.
SetActiveFlag - operation that sets the active flag.

GetDecomFlag - operation that retrieves the decommutation flag.
SeDecomFlag - operation that sets the decommutation flag.
GetLimits - operation that retrieves the limit set.

SetL imits - operation that sets the range limits for this parameter.
SetDeltal imit - operation that sets the delta limits for this parameter.
SetQuality - operation that sets the quality flag.

SetDecodeValue - operation that sets the decoded value.
GetDecomFlag - operation the retrieves the decommutation flag.
SetDecomFlag - operation that sets the decommutation flag.
SetValuesServedFlag - operation that sets the values served flag.
SelectDecom - operation that turns decommutation on or off for a parameter.
ConvertValue - operation that gets the converted value.

Update - operation that initiates parameter processing (i.e., limit checking, EU
conversion).

UpdateValue - operation that performs inherited class specific updates.

FtTIParameter ContextSwitch - class that represents a switch that is used to issue an event mes-
sage that the quality of the parameter is bad or the parameter has been marked static.

myStatus - attribute that indicates the current processing status.
Compar e- operation that checks the quality of the parameter.
FtTIParameter Table - class that maintains the values for all of the parameters.

3-39 305-CD-044-001



myParameter - attribute that is the table of all of the parameters.

myStatus - attribute that indicates the static status of the parameter.

Update - operation that updates the parameter table element indicated by the pid.
StaticCheck - operation that performs a static check on all of the parametersin the table.
GetActiveFlag - operation that retrieves the active flag.

SetQuality - operation that sets the quality of the parameter.

GetQuality - operation that retrieves the quality of the parameter.
GetConvertedValue - operation that retrieves the converted value of the parameter.
GetCurrentValue - operation that retrieves the current value of the context parameter.
GetLimits - operation that retrieves the limit set.

GetDecodedValue - operation that retrieves the decoded value of the parameter.
GetRawValue - operation that retrieves the raw value of the parameter.
ReadDatabase - operation that reads the parameter object stored in the database.

WriteDatabase - operation that writes the current parameter into the configuration
database.

FtTIParameterValues- classthat isused to maintain all valuesthat are uniqueto asingleinstance
of parameter.

myRawValue - attribute that represents the raw bit value received.
myPid - attribute that represents the parameter identification.
myDecodedValue - attribute that contains the decoded value.
myConvertedValue - attribute that contains the converted value.
myM nemonic - attribute that contains the mnemonic.
myFirstBitOffset - attribute that contains the first bit offset used to calcul ate the time tag.
myStatus - attribute that contains the status.
myQuality - attribute that contains the quality.
mySubSysteml d - attribute that contains the subsystem identification.
GetRawValue - operation that retrieves the raw value of the parameter.
GetDecodedValue - operation that retrieves the decoded value.
GetConvertedValue - operation that retrieves the converted value.
GetSubsystemld - operation that retrieves the subsystem identification.
GetQuality - operation that retrieves the quality.
FtTIParamM ap - class that represent the parameter maps.
myEdu - attribute that represents the Edu that will be sent to the decommutation process.

myPar ameter Table - attribute that represents the parameter table that will be sent to the
decommutation process.

Decom - operation that initiates the decommutation process.

3-40 305-CD-044-001



FtTIParamOperand - this class represents parameter values used in FtTIEquations for derived te-
lemetry.

CheckQuality - this member function will check the quality.

Operate - this member function will place a parameter value on the stack.
Initialize - this member function will initialize alink to the Parameter Table.
myValue - this member variable holds the value of the parameter.

myQuality - this member variable holds the quality information for the parameter.
myPid - this member variable isthe PID for the associated parameter.

myPar ameter TablePtr - this member variable is a pointer to the parameter table.

FtTIPolyConversion - class that represents atype of EU conversion. The polynomial conversion
uses the following equation:

y =Co+ C1x + Cox2 + ... C7x”.

myCoefficients - attribute that containsthe list of coefficients used in the calculation of the
EU.

myNewCoefficients - attribute that contains the list of coefficients specified by the user.
Convert - operation that converts the raw value to an EU value.
AdjustCurrentCoefficients - operation that adjusts the current coefficients.
SetCoefficient - operation that allows setting of the coefficients.

FtTIRawM ap - class that represents the map for decom. It initiates getting the raw value and up-
dating the parameter table.

myPid - attribute that represents the parameter ID.
myRawValue - attribute that contains the raw value.
myTargetParameter - attribute that is being filled by the decommutation process.
myComponentM ap - attribute that is an array of component maps.
myFirstBit - attribute that is the first bit.
myFirstBitOffset - attribute that is the first bit's offset.
GetPid - operation that obtains the parameter ID.
Decom - operation that gets the raw value.
FtTISin - this class represents the arithmetic sine function.
CheckQuality - this member function will check the quality of an operator.

Operate - this member function will remove a value from a stack and evaluate the sine of
that value.

myQuality - this member variable holds the quality information for an operator.
FtTIStatus - .this class represents all of the parameter's statuses.

myStatus - this member variable holds the current status.

myStatusType - this member variable is the current type of status.

3-41 305-CD-044-001



Set - this operation sets the status types to send to the parameter server.
Get - this operation gets the requested status value.
FtTISubtract - this class represents the arithmetic subtraction operator.
CheckQuality - this member function will check the quality of an operator.
Operate - this member function will remove two values from a stack and subtract them.
myQuality - this member variable holds the quality information for an operator.
FtTITan - this class represents the arithmetic tangent function.
myQuality - this member variable holds the quality information for an operator.
CheckQuality - this member function will check the quality of an operator.

Operate - this member function will remove avalue from a stack and eval uate the tangent
of that value.

FtTITelemetryController - class that is responsible for controlling an instance of the telemetry
subsystem process. This class receives and processes configuration adjustment requests.

myParameter Table - attribute that represents the parameters and their values.
myDecom - attribute that indicates an instance of decom.
myDerivedTelemetryM ap - attribute that represents a derived telemetry map.
myConfigRequest - attribute that represents a configuration adjustment request.
mySCStateCheck - attribute that represents the state check request.
ProcessRequest - operation that processes a configuration request.

I nitialize - operation that initializes attributes and interfaces.

Run - operation that runs the decommutation controller process.

Shutdown - operation that shuts down the decommutation controller process.

3.3 Memory Dump

The Memory Dump Subsystem provides the capability to collect and store the contents of down-
linked spacecraft or instrument computer memory dumps. It will detect and notify the user at the
start and completion of acomputer memory dump. All memory dump datawill be stored in afile.

3.3.1 Memory Dump Context

The Memory Dump Subsystem context diagram shown in Figure 3.3-1 depicts the data flows be-
tween the FOS Memory Dump Subsystem and external ground system as well as EOC internal
components. Descriptions of the data flows are summarized for each component:

EDOS. The EDOS forwards telemetry to Memory Dump Subsystem via EDOS Data
Units(EDUs). Each EDU contains a reconstructed CCSDS telemetry packet, quality
information, and time stamp. The packetized message transports spacecraft or instrument
computer memory dumps.

3-42 305-CD-044-001



ev-€

T00-770-AD-S0E

FOS
Data
EDOS Management
Subsystem
EDUs EDUs for Archive
Events
Memory Dump File
This System
StartDumpMessage
Directive Status
) FOS
Config Info
S Command
V User Control Directives Subsystem
FOS
Resource
Management . .
Subsystem Figure 3.3-1. Memory Dump Context Diagram




FOS Data Management Subsystem: During a memory dump session, all EDUs received
by the MemoryDumpSubsystem (if archiving is enabled) and memory dump events are
forwarded to the Data Management Subsystem for storage and processing. At theend of a
memory dump session, the file containing the memory dump EDUs is forwarded to the
Data Management Subsystem for storage

FOS Resource Management Subsystem: The Resource Management Subsystem supplies
configuration information required by Memory Dump Subsystem for memory dump
processing. This data includes EDOS and Command Management Subsystem
communication channels, and user configuration requests.

FOS Command Management Subsystem: The Command Management Subsystem
supplies the StartDumpM essage to the Memory Dump Subsystem to initialize a memory
dump session. The StartDumpM essage includes information on the source and the size of

the memory dump.

3.3.2 Memory Dump Interfaces

Table 3.3-1 Memory Dump Interfaces

Interface Interface Class Interface Class Service Provider Service | Frequency
Service Description User
Memory Dump [FtTIDumpConfig |Provides for TLM RMS At
Configuration configuring and initialization
Proxy controlling of amemory of a
dump process telemetry
process and
upon user
directive
EDOS interface|FtTIEdu Provides EDUs for TLM TLM Every EDU
memory dump
Telemetry FdArTImArchProxy |Archives EDUs DMS TLM Every EDU
Archiver
interface
Memory Dump [FoGnTImProxy Provides the CMD TLM At the start
Start Message StartDumpMessage of each
interface memory
dump
session.

3.3.3 Memory Dump Object Model

The Memory Dump Object Model isdepicted in Figure 3.3-2. Thefollowing section describesthe
objectsin the Memory Dump Object Model.

FtTIDumpController classis the controller of the memory dump process. This class configures
the process and controls the different memory dump states.

FoGnTImSourcel F class is the telemetry source interface. This class receives the data and per-
forms the communications layer interface.

FtTIEdu class obtains and verifies the critical information from the EDU. [f archiving is enabled,
this class sends the EDUs to be archived by DMS.

3-44

305-CD-044-001




Sr-¢

T00-70-dD-S0E

FoGnTImDumpProxy
FtTIDumpController
- myFoDsFile : FoDsFile +  IfAbsolute() : EcTBoolean
FtTIDumpConfig - myDumpDataUnit : FtTIDumpDataUnit + GetTableld() : EcTint
- - - myConfigRequest : FtTIConfigRequest +  GetSegOffset() : EcTint
myConfigRequest : FTIConfigRequest J - myConfigRequestList]] : FtTIConfigrequest +  GetWordLength() : EcTint
+  SendConfigRequest(&ConfigRequest) : EcTInt FtTIConfigRequest - myTimDumpProxy : FOGnTIMDUMPPIoxy___Get Start Messages From— +  GetAddress() : EcTint
+ SendConfigRequest() : EcTint — - +  GetMsg() : EcTBoolean
M Ce:‘”; :I"'g equest() : EcTin enath ) EcTint T myRequestType : EcTEnum + Initialize(arge, **argv) : EcTVoid + Init) : EcTBoolean
N Snm;nw"‘() EcTint g P P - myFilename : EcTString + () : EcTVoid
- myMode : EcTEnum +  DumpMode(&StartDumpMessage) : EcT\oid
- myPid : ECTEnum +  Shutdown() : ECTVoid
- mySubsystemld : ECTEnum
- myDropout : EcTint
- myDerivedUpdateRate : EcTInf
- myPort : EcTint eends
- myLimitGroup : EcTint
- myRangeLimit] : struct FoGnTImSourcelf
- myEUType : EcTint _
- myEUConversion : EcTInt +  myBufferSize : EcTInt Events T
- myEUCoefficients[] : EcTFloat +  myStream : istream
+  myTimeoutinterval : EcTint
+ Receive() : EcTVoid + myListenPort : EcTInt
+  GetRequestType() : ECTEnum +  myBufferPtr : EcTChar*
+ GetFilename() : EcTString +  myDmsEventPtr : ECTString* FdEvEventLogger
+ GetMode() : ECTEnum + *myBuffer : EcTChar
+  GetPid() : ECTEnum - + D, myParamList, myLineNumber,: EcTBoglean
+  GetSubsystemld() : ECTEnum + ReceiveData() : EcTInt myFile)
+  GetDropout() : EcTint +  GrabBits(offset, length) : ETInt
+ GetDerivedUpdateRate() : EcTint
+  GetPort() : EcTint [proxy class]
+  GetLimitGroup() : EcTint
+  GetDirection() : ECTEnUm
+  GetType() : EcTint
+ Getvalue() : <type>
+  GetEUType() : EcTint
+  GetEUConversion() : EcTint
+  GetEUCoefficients() : EcTFloat I=l
FTIEdU
- myPacketSeqNo : EcTint
- myPacketApid : EcTint
- myExpectedPacketApid : EcTint
- myPacketLength : ECTInt
- myExpectedPacketLength : EcTint
- myPacketScTime : EcTChar* Ial
- myArchiveFlag : EcTint
- myHeaderFlag : EcTint _A’C“'V?DSEUH'S_ FAATImArchProxy
+ GetCriticallnfo() : EcTInt + send() :int
+ ReceiveData() : EcTint +  receive() :int
+  Verify() : Ectint
+  GrabPacketDataBits(offset, length) : EcTint
+ SetArchiveFlag(inArchiveFlag) : EcTVoid
+  GetArchiveFlag() : EcTint
+  SetHeaderFlag(inHeaderFlag) : EcTVoid
+  GetHeaderFlag() : EcTint
Ial
FATIDumpDataUnit
L—cControls— - myFoDsFile : FoDsFile
+ Isbump() : EcTint FoDsFile
+  Store() : EcTVoid Writes To
+  GetNumberDumpWords() : EcTint - myPath : RWCString
+  ~FTIDumpDataUnit() : virtual - myFilename : RWCString
+ Close(fileptr) : Ectint
+  Open(file,path,action) : fileptr
+  Read(fileptr,recptr,size) : Ectint
+  Write(fileptr,recptr size) : Ectint

{shared - FDM with all S/S}
[proxy class]

Figure 3.3-2. Memory Dump Object Model



FtTIDumpDataUnit inherits from the FtTIEdu class which inherits from the FoGnTImSourcel F
class. This class provides dump specific extraction and verification capabilities.

FtTIDumpConfigisthe proxy to allow RMS to control the memory dump process.

FtTIConfigRequest is the link class used to carry the information from the FtTIDumpConfig
proxy to the memory dump process.

FoGnTImDumpProxy is the proxy provided by CMD which gets the StartDumpM essage to the
dump process. This message initiates a dump session.

FdEvEventL ogger isthe proxy provided by DM S which handles event messages.
FAArTImProxy isthe proxy provided by DM S which accepts and archives EDUSs.
FoDsFileisthe utility provided by DMS which performsfile I/O and manipulations.

3.3.4 Memory Dump Dynamic Model

The Memory Dump Subsystem is dynamically modeled in the state transition diagram of FtTI-
DumpController (Figure 3.3-3). The following scenarios and event trace diagrams detail the tran-
sition between the two main states (i.e. the Awaiting Message State and the Dump Mode State).
Combined, these sequence of events describe how a dump session captures amemory dump. The
following scenarios are described in this section:

Awaiting Message State Scenario
Dump Mode State Scenario

3.3.4.1 Awaiting Message State Scenario

3.3.4.1.1 Awaiting Message State Scenario Abstract

The purpose of "Awaiting Message State Scenario” isto initialize amemory dump session once it
gets the message to start. The event trace for this scenario can be found in Figure 3.3-4.

3.3.4.1.2 Awaiting Message State Summary Information

Interfaces:

CMD
Stimulus:

FTIDumpController receives a StartDumpM essage from the CMD interface.
Desired Response:

The memory dump process initiates the dump session and goes into Dump Mode State.
Pre-Conditions:

The memory dump process has been initialized and isin the Awaiting Message State.
Post-Conditions:

The memory dump processisin Dump Mode and is ready to receive additional EDUS.

3-46 305-CD-044-001



VA7

T00-770-AD-S0E

FOS
Data
EDOS Management
Subsystem
EDUs EDUs for Archive
Events
Memory Dump File
This System
StartDumpMessage
Directive Status
i FOS
Config Info
P Command
V User Control Directives Subsystem
FOS
Resource
Management
Subsystem

Figure 3.3-3. Memory Dump State Transition Diagram



8r-€

T00-770-AD-S0E

FoGnTImDumpProxy FtTIDumpController FtTIConfigRequest
——notify —— >
———get request——>>
<<——request received
get filename info——=>
<<—filename received——
open dymp file >
<< dump file opened

——get dump word count—=>
<<—word count received—
write dump mess

<< dump mes

hge to dump file————=>

sage written

Figure 3.3-4. Awaiting Message State Event Trace

FoDsFile



3.3.4.1.3 Awaiting Message State Scenario Description

FoGnTImDumpProxy initiates the memory dump session by notifying FtTIDumpController that
a StartDumpMessage hasarrived. FtTIDumpController calls FtTIConfigRequest to receivethere-
quest. FtTIDumpController calls FtTIConfigRequest to get information required to generate the
dump storage file name. FtTIDumpController uses the information in the StartDumpM essage to
generate a DumpFileName and then calls FoDsFile to open that file. FtTIDumpController then
calls FoDsFile to write out the StartDumpM essage to the dump storage file.

FTIDumpController calls FtTIConfigRequest to get the DumpWordCount and initializes the
DumpWordCount with information from the StartDumpMessage. FtTIDumpController then waits
in Dump Mode for the memory dump EDUs to arrive.

3.3.4.2 Dump Mode State Scenario

3.3.4.2.1 Dump Mode State Scenario Abstract

The purpose of "Dump Mode State Session Scenario” isto perform the actual memory dump and
to detect and terminate the end of a memory dump session. This scenario starts in Dump Mode
State and accepts EDUs and determinesif they are memory dump EDUs. All memory dump EDUs
are written out to the dump storage file. Once all memory dump EDUs have been received (asin-
dicated by the DumpWordCount) an event message is generated and the memory dump session is
completed. The event trace for this scenario can be found in Figure 3.3-5.

3.3.4.2.2 Dump Mode State Summary Information

Interfaces:

DMS

EDOS
Stimulus:

Memory dump EDUs arrive from EDOS.
Desired Response:

All memory dump EDUs are written out to the dump storagefile.
Pre-Conditions:

The memory dump processisin Dump Mode and is ready to receive EDUs.
Post-Conditions:

All memory dump EDUs for this memory dump session have been received.

3.3.4.2.3 Dump Mode State Scenario Description

When an EDU arrives, FtTIDumpController calls FtTIDumpDataUnit to receive the EDU. FtTI-
DumpController then calls FtTIDumpDataUnit to determineif the EDU is amemory dump EDU.
When thisisamemory dump EDU and if it isthe first memory dump EDU detected in this dump
session FtTIDumpController calls FAEvEventL ogger to send a " Beginning Dump™ event message.
For al memory dump EDUs FTIDumpController calls FtTIDumpDataUnit to verify the EDU.
When the EDU passes verification FtTIDumpController calls FtTIDumpDataUnit to store the
memory dump EDU. FTIDumpDataUnit calls FoDsFile to store the memory dump EDU. FTI-
DumpController decrements the DumpWordCount by the number

3-49 305-CD-044-001



FtTIDumpController FtTIDumpDataUnit FoDsFile FdEvEventLogger

— .
notify that EDU >
is available
<< notified
determine EDU type ——>>
<<——EDU type determined
send beginning dump event message >
for first Memory Dump EDU only)
for all
EDUs << message sent
until
word count .
w iszero |———verify EDU——S>
S
<<—EDU verified————
—————store EDU———>>
—— store EDU———>>
<<——EDU stored—
<<—EDU stored———
send successful dump event message >>
<< message sent

Figure 3.3-5. Dump Mode State Event Trace

T00-770-AD-S0E



of words dumped in the memory dump EDU. FtTIDumpController continuesin Dump Mode until
the DumpWordCount goesto zero. When the DumpWordCount is zero FtTIDumpController calls
FdEvEventL ogger to send an " Successful Dump Completed, Total words dumped = XX X" Event

Message.

3.3.5 Memory Dump Data Dictionary

FAArTImArchProxy - classthat isaproxy from DMS that archives EDUs.

FdEVEventL ogger - classthat isaproxy from DMS for logging events.

FoDsFile - classthat is the proxy provided by DM S which performs file 1/0 and manipulations.

FoGnTImDumpProxy - classthat isthe proxy provided by CMD which gets the StartDumpMes-
sage to the dump process.

FoGnTImSourcel F - class that initiates initialization of connections through a port. It recelvesa
data stream, checksfor errors and writes the data to a buffer.

myBuffer - attribute that stores the data.

myBuffer Ptr - attribute that points to the location of the datain the data buffer.
myBuffer Size - attribute that indicates the size of the buffer.

myDmsEventPtr - attribute that points to an event message when an error has occurred.
myL istenPort - attribute that represents the listening port number.

myStream - attribute that represents the data stream.

myTimeoutlnterval - attribute that represents the time interval between data.
GrabBits - operation that extracts bits from the buffer.

ReceiveData - operation that fills the buffer with data.

FtTIConfigRequest - class that corresponds to configuration update requests.
myDerivedUpdateRate - attribute that contains the rate of updating derived parameters.
myDr opout - attribute that contains the dropout interval.
myEUCoefficients - attribute that contains the EU coefficients.
myEUConversion - attribute that contains the EU conversion indicator.
myEUType - attribute that contains the EU conversion type.

myFileName - attribute that contains the filename used for a WriteDatabase or
ReadDatabase request.

myLimitGroup - attribute that contains the limit group to set.

myM ode - attribute that contains the on or off mode used for archiving or selective decom.
myPid - attribute that contains the parameter identification.

myPort - attribute that contains the input telemetry port.

myRangeL imit - attribute that contains the range limit information.

myRequestType - attribute that contains the type of request.

mySubsystemld - attribute that contains the subsystem identification.

3-51 305-CD-044-001



GetDerivedUpdateRate - operation that returns the derived update rate.
GetDirection - operation that returns the range limit direction.
GetDropout - operation that returns the dropout interval.
GetEUCoefficients - operation that returns the EU coefficients.
GetEUConversion - operation that returns the EU conversion.
GetEUType - operation that returns the EU type.

GetFileName - operation that returns the filename.

GetLimitGroup - operation that returns the limit group.

GetM ode - operation that returns the mode.

GetPid - operation that returns the parameter identification.

GetPort - operation that returns the telemetry port.

GetRequest Type - operation that returns the request type.
GetSubsysteml d - operation that returns the subsystem identification.
GetType - operation that returns the range limit type.

GetValue - operation that returns the range limit value.

Receive - operation that receives the data from an external interface.

FtTIDumpConfig - This class acts as the proxy to RM S to communicate with a TLM decom pro-

cess.

SendConfigRequest - This operation sends a configuration request to telemetry.
Configure - This operation configures the memory dump process with setup information.
Shutdown - This operation sends a shutdown message to the memory dump process.
myConfigRequest - This attribute represents the memory dump configuration request.

FtTIDumpController - Thisclassisresponsiblefor controlling an instance of the Memory Dump-
ing process. The Dump Controller checks for inputs to the Dump process and then controls the
state of the process.

Initialize - This operation sets up theinitial state of the memory dump process.
Run - Thisroutine controls the different states of the memory dump process.

DumpMode - This routine is called when the memory dump process is entering Dump
Mode. It will detect the start of a memory dump, do the dump, and respond to Dump

Messages.
Shutdown - Thisroutine does any required cleanup before the memory dump process exits.
myFoDsFile - This attribute is the file object which we are writing the dump Edu's to.

myDumpDataUnit - This attribute is the dump data unit object which contains the dump
Edu's.

myConfigRequest - This attribute represents the configuration request .
myConfigRequestList - This attribute represents the configuration request list.

3-52 305-CD-044-001



myTImDumpProxy - This attribute is the proxy to CMD which supplies the Start Dump
Message.
FtTIDumpDataUnit - This classis used to deal with Memory Dump Data
I sDump - This operation returns true if the current EDU is a memory dump EDU.
Store - This operation stores the current EDU into afile.

GetNumber DumpWords - This operation returns the number of memory dump wordsin
the current EDU.

myFoDsFile - This attribute is the file object which we are writing the dump Edu's to.

FtTIEdu - classthat represents areceived EDU. It readsthe EDU datafrom EDOS or DM Sinter-
face, and forwards the EDU to be decommed.

myPacketSeqNo - attribute that indicates the sequence number of the packet.
myPacketApid - attribute that indicates the packet identification.

myExpectedPacketApid - attribute that indicates the expected application identification
of the packet.

myPacketL ength - attribute that indicates the length in bytes of the packet.
myExpectedPacketL ength - attribute that indicates the expected packet length.
myPacketScTime - attribute that indicates the spacecraft time of the packet.
myHeader Flag - attribute that indicates if archiving is on.

myAr chiveFlag - attribute that indicates if the Edu header in present.

GetCriticallnfo - operation that gets the packer sequence number, the APID, and the
packet spacecraft time.

Verify - operation that checks that the critical information was received.
ReceiveData - operation that gets the Edu.

SetArchiveFlag - operation that sets the archive flag.

GetArchiveFlag - operation that returns the archive flag.

SetHeader Flag - operation that sets the header flag.

GetHeader Flag - operation that returns the header flag.

GrabPacketDataBits - operation that gets the data bits and sets the data pointer to the
location of the source data.

3.4 Spacecraft State Check

The Spacecraft StateCheck assists in back-orbit command verification. It allows the EOC to base-
line the current states of the spacecraft, monitor and compare the spacecraft's state with abaseline,
and compare the spacecraft's state with it's expected state.

3.4.1 Spacecraft State Check Context

RMS: The RMS subsystem provides the StateCheck process with Command Line Param-
etersthat gives StateCheck the Parameter Server identifier (Fig 3.4-1). The RMS interface

3-53 305-CD-044-001



T00-770-AD-S0E

FUI

DMS

event
K/messages

RMS

N\

SCRequest

Parameter
Server
address

register /
request parameters

expected state
request

expected state

CMS

Parameter
Server

/

parameters

Figure 3.4-1. Spacecraft State Check Context Diagram

Name
Server




is limited to statecheck process creation and therefore will not be seen in the rest of this sub-

system.

DMS:. The DMS subsystem receives event messages from the StateCheck process when
amiscompare is encountered. It also receives a summary event message upon completion
of a state check.

FUI: The FUI subsystem sends a request to the StateCheck process with a state check ar-
gument. This argument determines if the request is to load, baseline, or perform a state
check. A load argument will cause the StateCheck process to get an expected value table
from CMS. A baseline causes the StateCheck processto replace the valuesin the expected
value table with current valuesretrieved from the Parameter Server. A perform state check
argument causes the StateCheck process to compare the values in the expected value table
with current values retrieved from the Parameter Server.

Parameter Server: The Parameter Server subsystem provides the StateCheck process with
current downlink telemetry values from the space craft. The StateCheck process registers
with the Server and requests parameters when needed.

NameServer: The Name Server provides the StateCheck process with the network address
of CMS.

CMS: The CMS subsystem provides the StateCheck process with an expected value table

that will be used during a perform state check argument.

3.4.2 Spacecraft State Check Interfaces

Table 3.4-1. Spacecraft State Check Interfaces (1 of 2)

Interface Interface Class Interface Class Service Service Frequency
Service Description Provider User

Load StateCheckRequest [Loads the expected state [TLM FUI Minimum of
values onto a table. once per pass

Baseline StateCheckRequest [Replaces the expected  [TLM FUI Typically once
state table with current per pass.
downlink tlm.

StateCheck |StateCheckRequest|Compares current TLM FUI Minimum of
downlink tim with the once per pass.
expected state.

FetchTable |ExpectedStateTable [provides the state check |[CMS TLM When a state
process with a table of check is called.
expected values.

Event FdEvEvent Logger |generates events to DMS |DMS TLM When an event

Generator message is

sent.

Receive Buffer|PsClientlF Makes a buffer of Parameter Server |[TLM When state
requested parameters. check &

baseline
requests are
made.

3-55 305-CD-044-001




Table 3.4-1. Spacecraft State Check Interfaces (2 of 2)

Interface Interface Class Interface Class Service Service Frequency
Service Description Provider User
Register Client|PsClientlF Register a client as Parameter Server |[TLM When areceive
continuous buffer request
is made to
parameter
server.
NameServer |Directory_Name_Se|Return the network NameServer TLM When the state
rvice address of requested check process
processes is initialized.

3.4.3 Spacecraft State Check Object Model

FtTIStateCheckController classisthe controller of the process. It establishes connections with
FUI, CM S and Parameter Server when the StateCheck processisinitialized (see Fig 3.4-2). It gets
arequest from FtTIStateCheckRequest and determines if the request is aload, baseline, or a per-
form statecheck, then performs the request.

FtTIStateCheckRequest is a class that acts as a proxy to FUI. It gets arequest from FUI and can
return the request type and argument.

FtTISCStateCheck will load expected values, baseline or perform a statecheck against expected
values. A load will cause FtTISCStateCheck to get an expected state value table from CMS. A
baseline causes FtTISCStateCheck to replace the values in the expected value table with current
values retrieved from the Parameter Server. A perform state check argument causes the FtTISC-
StateCheck to compare the values in the expected value table with current values retrieved from
the Parameter Server. The compare is done by calling FoTIExpectedState with the retrieved val-
ues.

FtTIStateCheck Proxy isaproxy between the StateCheck process and FUI. It relaysthe command
from FUI to the StateCheck process.

FoTIExpectedValueisaclassthat holds the expected value and high & low values obtained from
CMS.

FoTIExpectedState isaclassthat contains the expected value table. 1t also performsthe compare
and replacement of expected values with current values.

FoPsParametersis a class that gets current parameters and stores them in the FoPsClientBuffer.
FoPsClientl F is an interface between the StateCheck and the Parameter Server.

FoPsClientBuffer isabuffer that holds the requested parameters that were requested from the pa-
rameter server.

FmM sExpectedStateTable is a proxy between CMS and the Statecheck process. It provides to
FTISCStateCheck an expected value table which it (FtTISCStateCheck) requested.

FdEVEventL ogger isaclassthat isaproxy between the Statecheck process and DMS. It receives
the event messages generated during the statecheck and relays them to their appropriate destina-
tions.

3-56 305-CD-044-001




FmMsExpectedStateTable

JAS

CreateConnection()EcTInt
DestroyConnection()EcTVoid
FetchTable() FoTIExpectedState&:
Receive(): FoTIExpectedState

[CMS proxy]

T00-770-AD-S0E

| ——sives expected values
Send(const FoMsTableRequest&cTYoid

FtTIStateCheckRequest

myRequestArgumentEcTGhar*
myRequestType enumeratpd

s
+
+

GetRequest() EcTVoid
GetRequestType()enumerhted
GetRequestArgument(EcTChar*

supplies request
info

FtTIStateCheckController

mySCStateCheckFtTISCStateCheck

myStateCheckRequesFTfStateCheckRequest

T
+
+

Initialize(): EcTVoid
Run(): EcTVoid
Shutdown() EcTVoid

notifies

FtTISCStateCheck

dStateT.
myPidList EcTint
myPsClientlF: FoPsClientlF
myExpectedState FoTIExpecteqState

1

Table

register onto/

+

Load(StateC|
Baseline(): ECTVoid
StateCheck() ECTVoid

baseline

FoTIExpectedState

myCEVTable FoGsCEVTable*
myData: RWSlistCollectables

myTime: RWTime

o

Compare(const FoPsClientBuffer&cTVoid
GetPids(): RWSlistCollectables
Replace(const FoPsClientBuffer&cTint
UpdateTable(const RWDlistCollectables& TIft

FoTlExpectedValue

myHighvalue Ec]
myLowValue EcT|
myPID: EcTint

Int

et

Tequest parameters

t parameters frol

SCstateCheckProxy

~ myTime: RWTime
- myFilename: RWString

+

Load(StateCheckArgument yp
Baseline(): ECTVoid
StateCheck() ECTVoid

o+

[StateCheck proxy (for FU)]

FoPsClientlF

~ myAddress RWCString

- myParameterTableRWHashDictionary

F—

RegisterClient(Cid,Address Mode, PidLIE) T
UpdateParameters(PidBuffeicTVoid
UnregisterClient(Cid)EcTVoid
Updatelnterests(Cid, PidLisgEcTint

[PsServer proxy]

FoPsClientBuffer

- mySize: EcTInt

+ AddParameter(PsRWModelParametdiy Tint

FoPsParameters

FdEvEventLogger

d event

S

GenEvent(RWCString* msg)

DMS proxy

Figure 3.4-2. Spacecraft State Check Object Model



3.4.4 Spacecraft State Check Dynamic Model
The following scenarios are described in this section:
Load Expected State
Initialize State Check
Baseline Expected State
Perform State Check

3.4.4.1 Initialize Spacecraft State Check Scenario

3.4.4.1.1 Initialize Spacecraft State Check Scenario Abstract

This scenario occurs when the StateCheck processis started. It addressesinitialization of the Stat-
eCheck interfaces and synchronization. The synchronization is achieved by making sure that at
least one full master cycle has been decommutated beforeinitialization is complete. Theinitialize
state check event trace is shown in Figure 3.4-3.

3.4.4.1.2Initialize Spacecraft State Check Summary Information

Interfaces:
NameServer
Parameter Server
CMS
FUI
Stimulus:
StateCheck processiis started.
Desired Response:
StateCheck processis ready to receive StateCheck commands.
Pre-Conditions:
None.
Post-Conditions:
StateCheck processis ready to receive aload expected value table request.

3.4.4.1.3 Initialize Spacecraft State Check Scenario Description

When a state check processis started, FtTIStateCheckController will initialize its interfacesto Pa-
rameter Server and FUI. FtTIStateCheckController then calls the NameServer to get the address
of the CM S process and initializesits interface to CMS. FtTIStateCheckController then registers
a continuous request for the MasterCycleComplete parameter with FoPsClientlF. FoPsClientl F
will return to FtTIStateCheckController who will in turn call FoPsClientl F to get the requested pa-
rameter. When the requested parameter is returned to FtTIStateCheckController, and its value in-
dicatesthat the EOC hasreceived aMasterCycle, therequest is canceled by calling FoPsClientl F.

3-58 305-CD-044-001



65-€

T00-770-AD-S0E

FmMsExpectedStateTable

FtTIStateCheckController FtTIStateCheckRequest FoPsClientlF
——initialize interface———>>
<<—initialized
initialize|interface >>
<< initialized
initialize interface >>
<< initialized
register continuous request >>
<< request registered
receive buffer >>
<< send parameter buffer
cancel continuous request >~
<< request cancelled

Figure 3.4-3. Initialize Spacecraft State Check Event Trace




3.4.4.2 Load Expected State Table Scenario

3.4.4.2.1 Load Expected State Table Scenario Abstract

This scenario can occur once the StateCheck initialization is complete. Thiswill get a state check
load request from FUI and passit onto CMS. CMSwill return the expected value table that can be
used at alater time. The load expected state table event trace is shown in Figure 3.4-4.

3.4.4.2.2 Load Expected State Table Summary Information

Interfaces:

FUI

CMS
Stimulus:

StateCheck process receives aload request from FUI.
Desired Response:

StateCheck process |oads an expected state table.
Pre-Conditions:

StateCheck has completed initialization.
Post-Conditions:

StateCheck processis ready to receive StateCheck commands.

3.4.4.2.3 Load Expected State Table Scenario Description

FtTIStateCheckController detects that a state check request is available and calls FtTIStateCheck-
Reguest to get the request. FtTIStateCheckController then calls FtTI StateCheckRequest to get the
request type. When the type is to load the expected value table, FtTIStateCheckController cals
FtTIStateCheckRequest to get the argument. FtTIStateCheckController then calls FtTISCState-
Check with the argument. FtTISCStateCheck calls FmM sExpectedStateTable with the argument
in order to fetch the expected value table. Once CMS provides the expected state table, FtTISC-
StateCheck will loop through each entry in the FOTIExpectedState table in order to accumulate all
of thePidsinasinglelist. ThisPidlistisused when registering with the parameter server asaone
shot client. FtTISCStateCheck then returnsto FtTIStateCheckController.

3.4.4.3 Baseline Expected State Table Scenario

3.4.4.3.1 Baseline Expected State Table Scenario Abstract

This scenario can occur once the StateCheck initialization is complete and an expected state table
has been loaded. When a state check baseline request is received from FUI, the valuesin the ex-
pected value table will be replaced by the current values retrieved from the parameter server. The
baseline expected state table event trace is shown in Figure 3.4-5.

3-60 305-CD-044-001



19-€

T00-770-AD-S0E

FtTIStateCheckController

——get request——>>|

l<<——request gotten——

get request type——>>|

<&<——request type———

——qget request argument——>>

FtTIStateCheckRequest

FtTISCStateCheck FmMsExpectedStateTable FoTIExpectedState

l<€&——request argument
load request >
——fetch table————>>
I<&<———=expected state table——
get pid|ist >>
<< pid|ist
<4 complete

Figure 3.4-4. Load Expected State Table Event Trace




c9-€

T00-770-AD-S0E

FtTIStateCheckController

————qet request——>>|

<&———request gotten——

get request type———>>

<&<——request type——

baseline

<< baseline

FtTIStateCheckRequest

equest

FtTISCStateCheck FoPsClientlF FoTIExpectedState
>

register one-shot request——=>
<&<——request registered———
——receive buffer————>>
<&———parameter buffer——

replace expected |state values >

<< value replaced

complete

Figure 3.4-5. State Check BaselLine Event Trace




3.4.4.3.2 Baseline Expected State Table Summary Information

Interfaces:

FUI

Parameter Server
Stimulus:

StateCheck process receives a baseline request from FUI.
Desired Response:

StateCheck replaces all values in the expected value table with the current values retrieved
from the parameter server.

Pre-Conditions:

StateCheck has completed initialization and an expected state table has been loaded.
Post-Conditions:

StateCheck processis ready to receive StateCheck commands.

3.4.4.3.3 Baseline Expected State Table Scenario Description

FtTIStateCheckController detects that a state check request is available and calls FtTIStateCheck-
Reguest to get the request. FtTIStateCheckController then calls FtTI StateCheckRequest to get the
request type. Whenthetypeisto baselinethe expected valuetable, FtTIStateCheckController then
calls FtTISCStateCheck to perform the baseline. FtTISCStateCheck calls FoPsClientl F to register
aone-shot request using the previously created Pid list. FoPsClientlF will return to FtTISCState-
Check who will in turn call FoPsClientl F to get the requested parameters. When the requested pa-
rameters arereturned, FtTISCStateCheck calls FOTIExpectedState in order to replace the expected
state values with the ones retrieved from the parameter server. When the values are replaced and
FoTIExpectedState returns, then FtTISCStateCheck returnsto FtTIStateCheckController.

3.4.4.4 Perform Spacecraft State Check Scenario

3.4.4.4.1 Perform Spacecraft State Check Scenario Abstract

This scenario can occur once the StateCheck initialization is complete and an expected state table
has been loaded. When astate check request isreceived from FUI, the valuesin the expected value
table will be compared with the current values retrieved from the parameter server. An event mes-
sage will be generated for each miscompare, and a summary event message will be generated at
the end of a StateCheck. The perform state check event trace is shown in Figure 3.4-6.

3.4.4.4.2 Perform Spacecraft State Check Summary Information

Interfaces:
FUI
Parameter Server
Stimulus:
StateCheck process receives a perform state check request from FUI.

3-63 305-CD-044-001



79-€

T00-770-AD-S0E

FtTIStateCheckController FtTIStateCheckRequest FTISCStateCheck FoPsClientlF FoTIExpectedState FdEVEventLogger

get request >
I<&——request received
get request type ———>>
=3 request typ

perform statecheck ——989 —— >
|——— register one-shot request ———>>

<& request regi d
receive buffer ———————>>
<&—— send parameter buffer ———
compare valjies >>
for each (—— send miscompare event message ——————>>
value in
table << event sent
send summary event message ———————>>|
<€&—————————— summary sent
<& values compared

<&————— statechedk complete

Figure 3.4-6. State Check Perform Event Trace



Desired Response:

StateCheck comparesall valuesin the expected val ue table with the current valuesretrieved
from the parameter server.

Pre-Conditions:

StateCheck has completed initialization and an expected state table has been |oaded.
Post-Conditions:

StateCheck processis ready to receive StateCheck commands.

3.4.4.4.3 Perform Spacecraft State Check Scenario Description

FtTIStateCheckController detects that a state check request is available and calls FtTIStateCheck-
Request to get the request. FtTIStateCheckController then calls FtTIStateCheckRequest to get the
request type. When the type is to perform the state check, FtTIStateCheckController then calls
FTISCStateCheck to perform the state check. FTISCStateCheck calls FoPsClientl F to register a
one-shot request using the previously created Pid list. FoPsClientlF will return to FtTISCState-
Check who will in turn call FoPsClientl F to get the requested parameters. When the requested pa-
rameters are returned, FtTISCStateCheck calls FoT|IExpectedState in order to compare the
expected state values with the ones retrieved from the parameter server. When the values are com-
pared and FoTIExpectedState returns, then FtTISCStateCheck returns to FtTIStateCheckControl -
ler.

3.4.5 Spacecraft State Check Data Dictionary
FdEvEventL ogger - class that acts as an interface to DMS.

GenEvent - attribute that generates an event when called.

FmM sExpectedStateT able - classthat actsasaproxy to CMS. It suppliesatable of expected state
values.

FetchTable - attribute that gets atable of values from the database.

FoTIExpectedState - class that provides the list of Pids used to request the parameters from the
parameter server.

GetPid - attribute that gets the Pid's.

Compar e - attribute that compares the current downlink telemetry value with a range of
expected values.

Replace - attribute that replaces the values in the expected value table with current
downlink telemetry.

UpdateT able - attribute that updates the table with expected values.

FoTlExpectedValue - class that gets the Pids and high & low values from the database.
FoPsClientBuffer - class that holds the current downlink telemetry valuesin a buffer.

AddParameter - attribute that adds parametersinto the buffer.
FoPsClientl F - classthat serves as aproxy between the parameter server and Statecheck process.

3-65 305-CD-044-001



Register Client - attribute that registers clients onto the parameter server.
UpdatePar ameter s - attribute that updates parameter fields with current parameters.
Unregister Client - attribute that unregisters clients off the parameter server.
Updatel nter ests - attribute that updates interested clients .

FoPsParameters - class that contains the parameters.

FtTISCStateCheck - class that assists in back orbit verification. It can monitor and compare the
spacecraft's state with an expected state.

Load - attribute that oads the expected values into an expected value table.

Baseline - operation that replaces the expected val ue table with current downlink telemetry
values.

StateCheck - operation that compares the downlink telemetry values with the expected
state.

FtTIStateCheckController - classthat isresponsible for controlling an instance of the state check
subsystem process. This class receives and processes configuration adjustment requests.

Initialize - operation that initializes attributes and interfaces.
Run - operation that runs the state check controller process.
Shutdown - operation that shuts down the state check controller process.

FtTIStateCheckRequest - classthat actsasaproxy. It receives requests and relays the appropriate
procedure to FtTIStateCheckController.

GetRequest Type - attribute that returns request type.
GetTable - attribute that gets the table of Pid's and Values.

3.5 Parameter Server

The Parameter Server processisresponsible for providing acentral repository where processes can
go to receive continuous or one shot parameter updates. Processes can also go to the Parameter
Server to update parametersthat they generate and are responsiblefor providing to other processes.
Every process that updates parameters must initialize any parameter values that they serve to ade-
fault value so that anyone that requests a parameter can be assured of recelving some valuein re-
turn.

Requests for service are handled via the Parameter Server'sinterface. A proxy interface object is
provided to any process that requires the services of the Parameter Server. Clients make requests
via callsto the interface object, thus hiding much of the interprocess communication and data for-
matting/object flattening mechanisms.

3.5.1 Parameter Server Context

The Parameter Server process receives two types of requests, one type to serve out parameters to
clients and another type of request to update parametersthat are held in the Parameter Server. Any
client can use these services provided it knows what it wants or what it wants to update. The Pa-
rameter Server context diagram is shown in figure 3.5-1.

3-66 305-CD-044-001



19-€

T00-770-AD-S0E

RCM RMS

v v

\

parameters

parameters,requests

LM [ p "
arameters
v

Parameters,requests

ANA

— parameters
CMD
( Parameter
Parameters Server requests
parameters\/
parameters
parameters
requests
requests
FUI
v
DMS
v

Figure 3.5-1. Parameter Server Context Diagram




3.5.2 Parameter Server Interfaces

Table 3.5-1. Parameter Server Interfaces

Interface Interface Class Interface Class Service Service |Frequency
Service Description Provider User
Register Client |FoPsClientlF Register a client as Param Server RMS, on process
continuous or oneshot FUI, startup and
CMD, as one shot
ANA clients are
DMS, needed
Update FoPsClientlF Allow providers to update |Param Server RCM, TLM every
Parameters parameter server RMS, packet;
TLM, others as
CMD needed
Unregister FoPsClientlF Allow client to disconnect |Param Server RMS, on process
Client from parameter server FUI, shutdown
CMD,
ANA,
DMS
Update FoPsClientlF Allow client to change its  |Param Server RMS, rare
Interests interests FUI,
CMD,
ANA,
DMS
AddParam to- | FoPsClientlF Allow client to build buffer of | Param Server RCM, whenever a
Buffer parameters to update RMS, parameter
TLM, needs to be
CMD updated
Receive Buff- | FoPsClientlF Allow client to receive param- | Param Server RMS, whenever
er eter buffer FUI, datais sent
CMD, to clients
ANA,
DMS

3.5.3 Parameter Server Object Model

The Parameter Server isboth arepository and a mechanism for sharing data between processes. It
isdesigned such that it can live on its own or inside another process. The object model for the pa-
rameter server (Figure 3.5-2) was developed to support such an idea. The parameter server is de-
signed to accept service callsfor two types of services. One serviceis providing parametersto any
process that has a need for them. The other service is allowing the parameter providers the ability
to update the parameters as new values are obtained.

3-68

305-CD-044-001



69-€

T00-70-dD-S0E

RWHashDictionary

I=l Ial &l
= FoPsParameterTable FoPsServerlF FoPsClientlF
FoPsClientList - myParameters : RWHashDictionary - myAddress : RWCString
|—is owned by ——] _ . |—is owned by — . . - : RWCString
~ myClients : RWHashbictihary myClients : RWHashDictionary myParameterTable : RWHashDictionary - myParameterTable : RWHashDictionary
+  RegisterClient(Cid Address Mode,PidList) : EcTV4id +  RegisterClient(Cid Address Mode, PidList) : ETVdid —— ;
i : ey " Mode, +  RegisterClient(Cid,Address,Mode PidList) : EcTI
+ Aﬂdc:ert(PsC}Zemv) EcTint + UnregisterClient(Cid) : EcTVoid + UpdateParameters(PidBuffer) : EcTVoid + UegIas‘:;,a:r:é(;rsmdgj;e”o,eEc-ero‘lsd) et
+ <R: ecl Cl:e‘m(clc)dvECET"T“I +  SetParameter(PsSRWModelParameter) : EcTint +  UnregisterClient(Cid) : EcTint + ugyegmeychem(cm) - EcTvoid
. . ! N :
emoveClient(Cid) : EcTIt + GetParameter(PsSRWModelParameter) : EcTInt +  Updatelnterests(Cid,PidList) : EcTInt +  Updatelnterests(Cid,PidList) : EcTInt
o +  SendAllBuffers(PsClientList) : ECTVoid + Initialize() : EcTVoid P . :
- + Run() : EcTVoid
Pid +  Shutdown() : EcTVoid
RWModelClient
FtTIParameterValues
- myPid : EcTInt
- myRawValue : EcTLong RWModel
- myDecodedValue : EcTDouple
Ial - myConvertedvalue : EcTDofible
FoPsClient - *myMnemonic : ECTChar

myFirstBitOffset : EcTInt
myStatus : FtTIStatus
myQuality : EcTLong
mySubSystemld : EcTLong

myBuffer : RWModelClient
myAddress : RWCptring

myMode : EcTint
myCid : RWCString
myPidList : EcTInt]

GetRawvalue() : EcTLong
GetDecodedValue() : EcTDduble
GetConvertedvalue() : EcTDouble
GetQuality() : EcTLong
GetSubSystemld() : EcTLong

+

Oneshot() : EcTint
+  SendBuffer() : EcT|n

okt

L>

L>

FoPsRWModelParameter

FoPsClientBuffer T

- mySize : EcTint PS

+ AddParameter(PsRWModelParameter) : EcTIht

Figure 3.5-2. Parameter Server Object Model



Requestsfor service are handled in the parameter server interface. The FoPsClientl F object isgiv-
en to any process that needs services from the parameter server. When the client makes a service
call of the FoPsClientlF object it is transmitted to the FoPsServerlF viainterprocess communica-
tions. Oncetherequest isreceived in the FoPsServerlF object it is trandated back to aservice call
of the FoPsParameterTable. The FoPsParameterTable object isthe repository for al of the param-
etersthat it collects. A parameter ID isthe key to obtaining a parameter from the FoPsParameter-
Table. All updates to the parameter objects are made through the FoPsParameterTable as well as
requestsfor parametersthemselves. The FoPsParameterTable object also keepsalist of clientsand
thelr respective process information. That is held in the FOPsClientList object. That list contains
FoPsClient objects which represent the external clients to the Parameter Server.

FoPsClientl F is the clients view of the parameter server. A client uses this interface to request
services from the parameter server.

FoPsServer | F isthe servers view of the parameter server. The parameter server uses this object
to catch all incoming requests of the parameter server.

FoPsParameter Table is a container class of FOPSRWM odel Parameters. It also performs the re-
guest processing of the parameter server.

FoPsClientList isacontainer class of FOPsClient objects. It holds all of the client objects.

FoPsClient is an object that represents the external client of the parameter server. It containsin-
formation on client requests and the clients address and process id.

FoPsClientBuffer isan object that holds the parameters that get served to an individual client.

FoPsServiceRequestM sg is an object that represents the client information passed from the proxy
to the server.

3.5.4 Parameter Server Dynamic Model
The following are scenarios defined in this section.
Register a client as a continuous user
Register a client as a one shot user
Send buffer to continuous client
Update the interests of a continuous client
Update parameters from parameter provider

3.5.4.1 Register a Client as a Continuous User Scenario

3.5.4.1.1 Register a Client as a Continuous User Scenario Abstract

The purpose of this scenario isto describe the process by which aclient isregistered for continuous
parameter serving. Figure 3.5-3 isthe event trace for this scenario.

3-70 305-CD-044-001



T.-€

T00-770-AD-S0E

FoPsClientlF FoPsServerlF FoPsParameterTable FoPsClientList FoPsClient FoPsClientBuffer FoPsRWModelParamter

RegisterClient >>

——— RegisterClient ———>>|
[———— CheckClient —————>>

I<&—— Client NOT Found
new lient — @ —————— >

new Buffer >>1
<& Don
<< Done
AddClient >
<< Client Added
For Associate With Client >>
Each
Pid -
<< Associatign Successful

I<&—— Registration Conplete

<&—— registration complete ——

Figure 3.5-3. Register a Continuous User Event Trace



3.5.4.1.2 Register a Client as a Continuous User Summary Information

Interfaces:

An external client
Stimulus:

A client request for continuous parameter updates
Desired Response:

The client receives continuous updates of the parameters it requested
Pre-Conditions:

The parameter server is ready to accept incoming requests
Post-Conditions:

The parameter server is ready to accept incoming requests

3.5.4.1.3 Register a Client as a Continuous User Scenario Description

The client calls the RegisterClient operation of the FOPsClientlF. The FoPsClientlF, in turn, calls
the RegisterClient operation of the FoPsServerl F object through interprocess object passing. Once
the call is made to the FoPsServerlF it calls the RegisterClient service of the

FoPsParameterTable. The FoPsParameterTable will determine that the mode of thisregistrationis
continuous and create a new FoPsClient and add it to the FoPsClientList. Thenit will associate the
FoPsClient with the parameters that it is interested by way of the parameter 1D list that the FoP-
sClient keegps. Once the associations are made the status of this call isreturned back through all of
the called objects back to the FoPsClientl F and back to the client.

3.5.4.2 Register a Client as a One Shot User Scenario

3.5.4.2.1 Register a Client as a One Shot User Scenario Abstract

The purpose of this scenario is to describe the process by which aclient is registered for one shot
parameter serving. Figure 3.5-4 isthe event trace for this scenario.

3.5.4.2.2 Register a Client as a One Shot User Summary Information

Interfaces:

An externa client
Stimulus:

A client request for a one shot parameter update
Desired Response:

The client receives a one time update of the parameters it requested
Pre-Conditions:

The parameter server is ready to accept incoming requests
Post-Conditions:

The parameter server is ready to accept incoming requests

3-72 305-CD-044-001



€L-€

T00-770-AD-S0E

FoPsClientlF FoPsServerlF FoPsParameterTable FoPsClientList FoPsClient FoPsClientBuffer FoPsParameterTable
RegisterClient >>
——RegisterClient———=>>
heckClient >
[<&<—Client Not Found———
new Glient >>
—————new Buffer———>>{
<< Done:
<< Dpne
One$hot >>
AddParameter >>
For ———=GetParameter———>>1
Each
Pid << Done
<&<—Parameter Added———
<< Dpone
SendBuffer >>
=3 Buffer sent
<< Dpne
<< Don

Figure 3.5-4. Register a One Shot User Event Trace



3.5.4.2.3 Register a Client as a One Shot User Scenario Description

The client calls the RegisterClient operation of the FoPsClientlF. The FoPsClientlF, in turn, calls
the RegisterClient operation of the FoPsServerl F object through interprocess object passing. Once
the call is made to the FoPsServerlF it calls the RegisterClient service of the FoPsParameterTable.
The FoPsParameterTable will determine that the mode of this registration is one shot and create a
new FoPsClient. It will then cyclethrough all of the parameter IDsin the client's parameter ID list
and get each parameter from the FoPsParameterTable and place it in the FoPsClientBuffer. Once
all of the parameters are in the buffer it is sent back to the client through the FoPsClientl F.

3.5.4.3 Send Buffer to a Continuous Client Scenario

3.5.4.3.1 Send Buffer to a Continuous Client Scenario Abstract

The purpose of this scenario isto describe the process by which aclient isregistered for continuous
parameter serving. Figure 3.5-5 isthe event trace for this scenario.

3.5.4.3.2 Send Buffer to a Continuous Client Summary Information

Interfaces:
An external client
Stimulus:
A client request for continuous parameter updates
Desired Response:
The client receives a buffer of the parameters it requested
Pre-Conditions:
The parameter server has received updates of parameters requested by the client
Post-Conditions:
The parameter server is ready to accept incoming requests

3.5.4.3.3 Send Buffer to a Continuous Client Scenario Description

The Parameter Server will make updates to all of the parameters from a provider and determine if
any clients are interested in them. This client has an interest in a parameter that was updated so it
is put in the clients buffer. When the provider is done updating the parameters the FoPsParame-
terTable will call its SendAllBuffers operation which will in turn call the SendBuffer operation of
all of the FoPsClients that have buffers that have at |east one parameter in them and they will be
sent to each client.

3.5.4.4 Update the Interests of a Client Scenario

3.5.4.4.1 Update the Interests of a Client Scenario Abstract

The purpose of this scenario isto describe the process by which a client updates the parametersin
which it has an interest in recelving. Figure 3.5-6 isthe event trace for this scenario.

3.5.4.4.2 Update the Interests of a Client Summary Information

I nterfaces:
An external client

3-74 305-CD-044-001



QL€

T00-770-AD-S0E

FoPsServerlF

send all buffers ——=

<<——done———

FoPsParameterTable FoPsClient

’—>

for
each
client

I

—  send buffer —————=

<<— buffer sent———

Figure 3.5-5. Send Buffer to Continuous Client Event Trace



9/-€

T00-770-AD-S0E

FoPsClientlF FoPsServerlF

Update Interests ——=—

<<—done

—— update interests —>>

FoPsParameterTable FoPsClientList

—— check client————=>

<<——client found ———

unregister
client

<< —

register client

~<———

<< done

Figure 3.5-6. Update Client Interests Event Trace



Stimulus:

A client requests an update of hisinterests
Desired Response:

The client information of hisinterests is updated
Pre-Conditions:

The parameter server is ready to accept incoming requests
Post-Conditions:

The parameter server is ready to accept incoming requests

3.5.4.4.3 Update the Interests of a Client Scenario Description

The client will call the Updatel nterests operation of the FoPsClientlF who will in turn call the Up-
datel nterests operation of the FoPsServerlF. Once in the FoPsServerlF it will call the Updateln-
terests operation of the FoPsParameterTable. It will check to seeif the client exists or not and if
the client existsit will call its UnregisterClient operation to remove the old parameter associations
and then it will call its RegisterClient operation to essentially re-register the client with its new in-
terests and then return the status back through the called objects to the FoPsClientlF which will
relay the status of the call to the client.

3.5.4.5 Update Parameters from a Parameter Provider Scenario

3.5.4.5.1 Update Parameters from a Parameter Provider Scenario Abstract

The purpose of this scenario is to describe the process by which a parameter producer updates pa-
rameters in the parameter server. Figure 3.5-7 isthe event trace for this scenario.

3.5.4.5.2 Update Parameters from a Parameter Provider Summary Information
Interfaces:

An external client
Stimulus:

A client requests to update parameters
Desired Response:

The parameters the client provides are updated in the parameter table
Pre-Conditions:

The parameter server is ready to accept incoming requests
Post-Conditions:

The parameter server is ready to accept incoming requests

3.5.4.5.3 Update Parameters from a Parameter Provider Scenario Description

For each parameter that the client wantsto update it will call the AddParamToBuffer operation on
the FoPsClientlF. That will put the parameter in a temporary buffer. Once al of the parameters

3-77 305-CD-044-001



areinthetemporary buffer the client will call the UpdateParameters operation of the FoPsClientl F.
The FoPsClientlF will call the UpdateParameters operation of the FoPsServerlF who will in turn
call the UpdateParameters operation of the FoPsParameterTable. The FoPsClientlF will then re-
turn to the control to the client so that the client can go back and do whatever it needsto do without
waiting for the parametersto update. The FoPsParameterTable will take each parameter from the
temporary buffer and update the corresponding parameter in the table with the new information.

3.5.5 Parameter Server Data Dictionary

FoPsClient
class FoPsClient
This classis used to create, destroy and process any client which expresses an interest in any
parameter contained within the parameter table.
Public Construction
FoPsClient(RWCString myAddress, ECTInt myMode, RWCString myCid, ECTInt myP-
idList)
This member function is the default constructor for this class.
~FoPsClient(EcTVoid)
FoPsClient
This member function is the destructor for this class.

Public Functions

EcTInt OneShot(EcTVoid)

This member function will process a client which is requesting that Pid values be sent to
him once only. Hence the name OneShot.

EcTInt SendBuffer (EcTVoid)
This member function will send the buffer which contains the requested Pid'sto its respec-
tive client.

Private Data

RWCString myAddress
This member variable identifies the address/port of the client

RWM odel Client myBuffer
This member variable identifies the address of the clients Pid buffer

RWCString myCid
This member variable identifies the client by id/name

3-78 305-CD-044-001



6.-€

T00-770-AD-S0E

FoPsClientlF PsServerlF FoPsParameterTable FoPsRWModelParameter

- update parameters—>>

find parameter——=
p]:r;ﬁ]agtgr < ——parameter found
buipfer set pargmeter S>>
<< paranjeter set

Figure 3.5-7. Update Parameters from Provider Event Trace



EcTInt myMode

This member variable identifies the type/mode of client making the request, i.e. "continu-
ous" or "one-shot".

EcTInt myPidList[]
This member variable contains the Pid's which the requesting client has an interest.

FoPsClientBuffer
class FoPsClientBuffer
This classis used to create and destroy a client buffer along with the capability of adding pa-
rameters to the clients parameter buffer.
Public Construction

FoPsClientBuffer (ECTVoid)
This member function is the default constructor for this class.

~FoPsClientBuffer (ECTVoid)
This member function is the destructor for this class

Public Functions

EcTInt AddPar ameter (FOPsRWM odel Parameter)
This member function is used for adding parameters to the clients parameter buffer.

Private Data

EcTInt mySize
This member variable identifies the current buffer size

FoPsClientl F
class FoPsClientl F

Thisclassisthe client representation of aparameter server. Thisobjectisgivento all processes
that which to use the services of a parameter server.

Base Classes
public PsParameter Server | F

Public Functions

EcTEcTVoid FoPsServerlF()
This member function is the default constructor for this class.

EcTInt Register Client(RWCString Cid, RWCString Address, EcTInt Mode, EcTInt
PidList[])

This member function allows the client to register to receive either a oneshot request or a

3-80 305-CD-044-001



continuous request for parameters.
EcTEcTVoid Unregister Client(RWCString Cid)
This member function allows a client to unregister an interest in parameters.
EcTInt Updatel nterests(RWCString Cid, EcTInt PidList[])
This member function allows a client to change his parameter interests.
EcTEcTVoid UpdatePar ameter s(FoPsClientBuffer PidBuffer)
This member function allows a parameter producer to update the parameters that it gener-

ates.
Private Data

RWCString myAddress
This member variable is the address of the parameter server.

FoPsClientList
class FoPsClientL ist
Thisclassisused to contain client objects who have contacted the parameter server with areg-
istered interest of specific parameters.
Public Construction
FoPsClientList()
This member function is the default constructor for this class.

~FoPsClientList()
This member function is the destructor for this class

Public Functions
EcTint AddClient(FoPsClient)
This member function adds a client to the client list
EcTInt CheckClient(Cid)
This member function searches the client list to seeif the client already is registered.

EcTInt RemoveClient(Cid)
This member function removes a client from the client list

FoPsParameter Table
class FoPsParameter Table

Thisclassisthe keeper of all of the parametersfor aparameter server. Anything that you might
want out of a parameter can be gotten through the parameter table.

3-81 305-CD-044-001



Public Functions
EcCTECTVoid FoPsParameter Tablg()
This member function is the default constructor for this class.
EcTInt GetPar ameter (FOPSRWM odel Parameter Param)
This member function will get a parameter and return it to the requester.

EcTEcTVoid Register Client(RWCString Cid, RWCString Address, EcTInt Mode, EcTInt
PidList[])

This member function will register a client with the parameter table.
EcTEcTVoid SendAllBuffer s(FoPsClientList myClients)

This member function will send all the client buffersto their respective clients.
EcTInt SetPar ameter (FOPSRWM odel Parameter Param)

This member function will set the values of a parameter.

EcTEcTVoid Unregister Client(RWCString Cid)
This member function will remove a client from the parameter server.

Private Data

FoPsClientList myClients
This member variable is the object that holds al of the clients.

FoPsServer | F
class FoPsServer | F
This class represents the server side of the interface between the parameter server and the out-
side world.
Base Classes
public FoPsParameter Server | F

Public Functions
EcTEcTVoid FoPsServerl F()
This member function is the default constructor for this class.
EcCTECTVoid Initialize()

Thismember function initializes all of the objectsthat are needed to start a parameter serv-
er.

EcTEcTVoid Register Client(RWCString Cid, RWCString Address, ECTInt Mode, EcTInt
PidList[])

This member function will register a client to receive continuous parameter updates or a
one-shot of parameters.

3-82 305-CD-044-001



EcCTECTVoid Run()

Thismember function will start the parameter server and get the parameter server ready to accept
requests for parameters and requests to update parameters.

ECTEcTVoid Shutdown()

This member function will nicely terminate a parameter server.
EcTInt Unregister Client(RWCString Cid)

This member function allows the client to terminate arequest for continuous parameter updates.
EcTInt Updatel nterests(RWCString Cid, EcTInt PidList[])

This member function allows a client to modify the list of parametersthat it has an interest in.

ECTEcTVoid UpdatePar ameter s(PidBuffer)
This member function allows the parameter provider to update parameters that it generates.

Private Data

RWCString myAddress
This member variable is the clients address

FoPsParameterTable myParameter Table
This member variable is the parameter table.

ServiceRequestM essage
class ServiceRequestM essage

Base Classes
public RWCollectable

Protected Data
RWOrdered myServiceArgList
This member variable corresponds to the argument list to be passed to the parameter server.

eService myServiceld
attributes myServiceld
This member variable corresponds to the Id number of the service being requested.
Inherited from class "RWCollectable"

eService
enum eService
This member variable will define available services

3-83 305-CD-044-001



This page intentionally left blank.

3-84 305-CD-044-001



Abbreviations and Acronyms

ACL Access Control List

AD Acceptance Check/TC Data

AGS ASTER Ground System

AM Morning (ante meridian) -- see EOS AM

Ao Availability

APID Application Identifier

ARAM Automated Reliability/Availability/Maintainability

ASTER Advanced Spaceborne Thermal Emission and Reflection Radiometer (formerly
ITIR)

ATC Absolute Time Command

BAP Baseline Activity Profile

BC Bypass check/Control Commands

BD Bypass check/TC Data (Expedited Service)

BDU Bus Data Unit

bps bits per second

CAC Command Activity Controller

CCB Change Control Board

CCSDS Consultative Committee for Space Data Systems

CCTI Control Center Technology Interchange

CD-ROM Compact Disk-Read Only Memory

CDR Critical Design Review

CDRL Contract Data Requirements List

CERES Clouds and Earth's Radiant Energy System

Cl Configuration item

CIL Critical Items List

CLCW Command Link Control Words

CLTU Command Link Transmission Unit

CMD Command subsystem

CMS Command Management Subsystem

CODA Customer Operations Data Accounting

COP Command Operations Procedure

COTS Commercial Off-The-Shelf

CPU Central Processing Unit

AB-1 305-CD-044-001



CRC
CSCl
CSMS
CSS
CSTOL
CTIU
DAAC
DAR
DAS
DAT
DB
DBA
DBMS
DCE
DCP
DEC
DES
DFCD
DID
DMS
DOD
DoD
DS
DSN
DSS
e-mail
Ecom
ECS
EDOS
EDU
EGS
EOC

EOD
EON
EOS

Cyclic Redundancy Code

Computer software configuration item
Communications and Systems Management Segment

Communications Subsystem (CSMS)

Customer System Test and Operations Language
Command and Telemetry Interface Unit (AM-1)

Distributed Active Archive Center
Data Acquisition Request
Detailed Activity Schedule
Digital Audio Tape

DataBase

Database Administrator

Database Management System
Distributed Computing Environment
Default Configuration Procedure
Digital Equipment Corporation
Data Encryption Standard

Data Format Control Document
Data Item Description

Data Management Subsystem
Digital Optical Data

Department of Defense

Data Server

Deep Space Network

Decision Support System
electronic mail

EOS Communication

EOSDIS Core System

EOS Data and Operations System
EDOS Data Unit

EOS Ground System

Earth Observation Center (Japan);
EOS Operations Center (ECS)

Entering Orbital Day
Entering Orbital Night
Earth Observing System

AB-2

305-CD-044-001



EOSDIS
EPS
ESH
ESN
ETS
EU
EUVE
FAS
FAST
FDDI
FDF
FDIR
FDM
FMEA
FOP
FORMATS
FOS
FOT
FOV
FPS
FRM
FSE
FTL
FUI
GB
GCM
GCMR
GIMTACS
GMT
GN
GOES
GSFC
GUlI
H&S
H/K
HST

EOS Data and Information System
Encapsul ated Postscript

EDOS Service Header

EOSDI'S Science Network

EOS Test System

Engineering Unit

Extreme Ultra Violet Explorer

FOS Analysis Subsystem

Fast Auroral Snapshot Explorer
Fiber Distributed Data Interface
Flight Dynamics Facility

Fault Detection and I solation Recovery
FOS Data Management Subsystem
Failure Modes and Effects Analyses
Frame Operations Procedure

FDF Orbital and Mission Aids Transformation System

Flight Operations Segment

Flight Operations Team

Field-Of-View

Fast Packet Switch

FOS Resource Management Subsystem

FOT S/C Evolutions

FOS Telemetry Subsystem

FOS User Interface

Gigabytes

Global Circulation Model

Global Circulation Model Request

GOES I-M Telemetry and Command System
Greenwich Mean Time

Ground Network

Geostationary Operational Environmental Satellite
Goddard Space Flight Center

Graphical User Interface

Health and Safety

Housekeeking

Hubble Space Telescope

AB-3

305-CD-044-001



I/F
1/0
ICC
ICD
ID
IDB
IDR
|EEE
|OT
P
IP-ICC
IPs
IRD
ISDN
ISOLAN
ISR
IST
IST
IWG
JPL
Kbps
LAN
LaRC
LASP
LEO
LOS
LSM
LTIP
LTSP
MAC

MB
MBONE
Mbps
MDT
MIB

Interface

I nput/Output

Instrument Control Center
Interface Control Document
| dentifier

Instrument Database
Incremental Design Review

Institute of Electrical and Electronics Engineers

Instrument Operations Team
International Partners

International Partners-1nstrument Control Center

International Partners

Interface requirements document
Integrated Systems Digital Network
Isolated Local Area Network

Input Schedule Request

Instrument Support Terminal
Instrument Support Toolkit
Investigator Working Group

Jet Propulsion Laboratory

Kilobits per second

Local Area Network

Langley Research Center
Laboratory for Atmospheric Studies Project
Low Earth Orbit

Lossof Signd

Loca System Manager

Long-Term Instrument Plan
Long-Term Science Plan

Medium Access Control;
Message Authentication Code

Megabytes

Multicast Backbone

M egabits per second

Mean Down Time
Management Information Base

AB-4

305-CD-044-001



MISR
MMM
MO&DSD
MODIS
MOPITT
MSS
MTPE
NASA
Nascom
NASDA
NCAR
NCC
NEC
NFS
NOAA
NSI
NTT
OASIS
ODB
ODM
OMT
(0[]
OO0D
OpLAN
osl
PACS
PAS
PDB
PDF
PDL
PDR

Pl

PI/TL
PID
PIN
POLAR

Multi-angle Imaging Spectro-Radiometer
Minimum, Maximum, and Mean

Mission Operations and Data Systems Directorate (GSFC Code 500)

M oderate resolution Imaging Spectrometer
Measurements Of Pollution In The Troposphere
Management Subsystem

Mission to Planet Earth

National Aeronautics and Space Administration
NASA Communications Network

National Space Development Agency (Japan)
National Center for Atmospheric Research
Network Control Center

North Equator Crossing

Network File System

National Oceanic and Atmospheric Administration
NASA Science Internet

Nippon Telephone and Telegraph

Operations and Science Instrument Support
Operational Database

Operational Data Message

Object Model Technique

Object Oriented

Object Oriented Design

Operational LAN

Open System Interconnect

Polar Acquisition and Command System
Planning and Scheduling

Project Data Base

Publisher's Display Format

Program Design Language

Preliminary Design Review

Principal Investigator

Principal Investigator/Team Leader
Parameter |ID

Password Identification Number

Polar Plasma L aboratory

AB-5

305-CD-044-001



POSIX
PSAT
PSTOL
QIL
RIT
RAID
RCM
RDBMS
RMA
RMON
RMS
RPC
RTCS
RTS

SSIM

STOL

Polar-Orbiting Platform

Portable Operating System for Computing Environments
Predicted Site Acquisition Table

PORTS System Test and Operation Language
Quick Look

Real-Time

Redundant Array of Inexpensive Disks
Real-Time Contact Management

Relational Database Management System
Reliability, Maintainability, Availability

Remote Monitoring

Resource Management Subsystem

Remote Processing Computer

Relative Time Command Sequence

Relative Time Sequence;
Real-Time Server

Spacecraft

Schedule Add Requests

Spacecraft Controls Computer

Science Computing Facility

Spacecraft Command Language

Software Development Facility

Science Data Processing Segment

Software Development and Validation Facility
Systems, Engineering, and Analysis Support
South Equator Crossing

Support LAN

S-band Multiple Access

Service Management Center

Space Network

System Network Mgt Protocol

Structured Query Language

S-band Single Access

Spacecraft Simulator

Solid State Recorder

System Test and Operations Language

AB-6

305-CD-044-001



T&C
TAE
TBD
TBR
TCP
TD
TDM
TDRS
TDRSS
TIROS
TL
TLM
TMON
TOO
TOPEX
TPOCC
TRMM
TRUST
TSS
TSTOL
T™W
u.s.
UAV
ul

UPS
us
UTC

VAX
VMS
WIS
WAN
WOTS
XTE

Telemetry and Command

Transportable Applications Environment

To Be Determined

To Be Replaced/Resol ved/Reviewed
Transmission Control Protocol

Target Day

Time Division Multiplex

Tracking and Data Relay Satellite

Tracking and Data Relay Satellite System
Television Infrared Operational Satellite
Team Leader

Telemetry subsystem

Telemetry Monitor

Target Of Opportunity

Topography Ocean Experiment
Transportable Payload Operations Control Center
Tropical Rainfall Measuring Mission
TDRSS Resource User Support Terminal
TDRSS Service Session

TRMM System Test and Operations Language
Target Week

United States

User AntennaView

User Interface

User Planning System

User Station

Universal Time Code;
Universal Time Coordinated

Virtual Extended Address
Virtual Memory System
Workstation

Wide Area Network

Wallops Orbital Tracking Station
X-Ray Timing Explorer

AB-7

305-CD-044-001



This page intentionally left blank.

AB-8 305-CD-044-001



Glossary

activity

analysis

attitude data

availability

GLOSSARY of TERMS for the Flight Operations Segment

A specified amount of scheduled work that has a defined start
date, takes a specific amount of time to complete, and comprises
definable tasks.

Technical or mathematical evaluation based on calculation,
interpolation, or other analytical methods. Analysis involves the
processing of accumulated data obtained from other verification
methods.

Data that represent spacecraft orientation and onboard pointing
information. Attitude data includes:

» Attitude sensor data used to determine the pointing of the
spacecraft axes, calibration and alignment data, Euler angles or
guaternions, rates and biases, and associated parameters.

« Attitude generated onboard in quaternion or Euler angle form.

 Refined and routine production data related to the accuracy or
knowledge of the attitude.

A measure of the degree to which an item is in an operable and
committable state at the start of a "mission” (a requirement to
perform its function) when the "mission" is called for an
unknown (random) time. (Mathematically, operational
availability is defined as the mean time between failures divided
by the sum of the mean time between failures and the mean down
time [before restoration of function].

GL-1 305-CD-044-001



availability
(inherent) (Aj)

availability
(operational)
(Ao)

baseline
activity profile

build

calibration

The probability that, when under stated conditions in an ideal
support environment without consideration for preventive action,
a system will operate satisfactorily at any time. The “ided
support environment” referred to, exists when the stipulated
tools, parts, skilled work force manuals, support equipment and
other support items required are available. Inherent availability
excludes whatever ready time, preventive maintenance
downtime, supply downtime and administrative downtime may
require. Aj can be expressed by the following formula:

Aj =MTBF (MTBF + MTTR)

Wheree MTBF = Mean Time Between Failures
MTTR = Mean Time To Repair

The probability that a system or equipment, when used under
stated conditions in an actual operational environment, will
operate satisfactorily when called upon. Ag can be expressed by

the following formula:

Ao = MTBM /(MTBM + MDT + ST)
Where: MTBM = Mean Time Between Maintenance
(either corrective or preventive)

MDT = Mean Maintenance Down Time where
corrective, preventive administrative and logistics actions are all
considered.

ST = Standby Time (or switch over time)

A schedule of activities for a target week corresponding to
normal instrument operations constructed by integrating long
termplans(i.e., LTSP, LTIP, and long term spacecraft operations
plan).

An assemblage of threadsto produce agradual buildup of system
capabilities.

The collection of data required to perform calibration of the
instrument science data, instrument engineering data, and the
spacecraft engineering data. It includes pre-flight calibration
measurements, in-flight calibrator measurements, calibration
equation coefficients derived from calibration software routines,
and ground truth data that are to be used in the data calibration
processing routine.

GL-2 305-CD-044-001



command

command and
data handling
(C&DH)

command
group

detailed
activity
schedules

direct broadcast

EOS Data and
Operations
System
(EDOS)
production
data set

Instruction for action to be carried out by a space-based
Instrument or spacecraft.

The spacecraft command and data handling subsystem which
conveys commands to the spacecraft and research instruments,
collects and formats spacecraft and instrument data, generates
time and frequency references for subsystems and instruments,
and collects and distributes ancillary data.

A logical set of one or more commands which are not stored
onboard the spacecraft and instruments for delayed execution,
but are executed immediately upon reaching their destination on
board. For the U.S. spacecraft, from the perspective of the EOS
Operations Center (EOC), a preplanned command group is
preprocessed by, and stored at, the EOC in preparation for later
uplink. A real-time command group is unplanned in the sense
that it is not preprocessed and stored by the EOC.

The schedule for a spacecraft and instruments which covers up to
al0 day period and is generated/updated daily based on the
instrument activity listing for each of the instruments on the
respective spacecraft. For a spacecraft and instrument schedule
the spacecraft subsystem activity specifications needed for
routine spacecraft maintenance and/or for supporting
instruments activities are incorporated in the detailed activity
schedule.

Continuous down-link transmission of selected real-time data
over a broad area (non-specific users).

Data sets generated by EDOS using raw instrument or spacecraft
packets with space-to-ground transmission artifacts removed, in
time order, with duplicate data removed, and with quality/
accounting (Q/A) metadata appended. Time span or number of
packets encompassed in a single data set are specified by the
recipient of the data. These data sets are equivalent to Level 0
data formatted with Q/A metadata.

For EOS, the data sets are composed of: instrument science
packets, instrument engineering packets, spacecraft
housekeeping packets, or onboard ancillary packets with quality
and accounting information from each individual packet and the
data set itself and with essentia formatting information for
unambiguous identification and subsequent processing.

GL-3 305-CD-044-001



housekeeping
data

instrument

instrument
activity
deviation list

instrument
activity list

instrument
engineering
data

instrument
Mi Croprocessor
memory loads

instrument
resource
deviation list

instrument
resource profile

instrument
science data

long-term
instrument
plan (LTIP)

The subset of engineering data required for mission and science
operations. These include health and safety, ephemeris, and
other required environmental parameters.

* A hardware system that collects scientific or operational data.

» Hardware-integrated collection of one or more sensors
contributing data of one type to an investigation.

* An integrated collection of hardware containing one or more
sensors and associated controls designed to produce dataon/in an
observational environment.

An instrument's activity deviations from an existing

instrument activity list, used by the EOC for developing the
detailed activity schedule.

An instrument's list of activities that nhominally covers seven
days, used by the EOC for developing the detailed activity
schedule.

subset of telemetered engineering data required for performing
Instrument operations and science processing

Storage of data into the contents of the memory of an
instrument’s microprocessor, if applicable. These loads could
include microprocessor-stored tables, microprocessor-stored
commands, or updates to microprocessor software.

An instrument's anticipated resource deviations from an

existing resource profile, used by the EOC for establishing
TDRSS contact times and building the preliminary resource
schedule.

Anticipated resource needs for an instrument over atarget

week, used by the EOC for establishing TDRSS contact times
and building the preliminary resource schedule.

Data produced by the science sensor(s) of an instrument, usually
constituting the mission of that instrument.

The plan generated by the instrument representative to the
spacecraft's IWG with instrument-specific information to
complement the LTSP. Itisgenerated or updated approximately
every six months and covers a period of up to approximately 5
years.

GL-4 305-CD-044-001



long-term
science plan
(LTSP)

long term
spacecraft
operations plan

mean time
between failure
(MTBF)

mean down
time (MDT)

mean time
between
maintenance
(MTBM)

mean time to
repair (MTTR)

object

orbit data

playback data

The plan generated by the spacecraft's IWG containing
guidelines, policy, and priorities for its spacecraft and
instruments. The LTSP is generated or updated approximately
every six monthsand coversaperiod of up to approximately five
years.

Outlines anticipated spacecraft subsystem operations and
maintenance, along with forecasted orbit maneuvers from the
Flight Dynamics Facility, spanning a period of several months.

Thereliability result of the reciprocal of afailure rate that
predicts the average number of hours that an item, assembly or
piece part will operate within specific design parameters.
(MTBF=1/(]) failurerate; (1) failurerate=# of failures/operating
time.

Sum of the mean time to repair MTTR plus the average logistic
delay times.

The mean time between preventive maintenance (MTBPM) and
mean time between corrective maintenance (MTBCM) of the
ECS equipment. Each will contribute to the calculation of the
MTBM and follow therelationship: YMTBM = 1/MTBPM + 1/
MTBCM

The mean time required to perform corrective maintenance to
restore a system/equipment to operate within design parameters.

I dentifiable encapsul ated entities providing one or more services
that clients can request. Objects are created and destroyed as a
result of object requests. Objects are identified by client via
unique reference.

Data that represent spacecraft locations. Orbit (or ephemeris)
data include: Geodetic latitude, longitude and height above an
adopted reference ellipsoid (or distance from the center of mass
of the Earth); a corresponding statement about the accuracy of
the position and the corresponding time of the position (including
the time system); some accuracy requirements may be hundreds
of meters while other may be afew centimeters.

Data that have been stored on-board the spacecraft for delayed
transmission to the ground.

GL-5 305-CD-044-001



preliminary
resource
schedule

preplanned
stored
command

principal
investigator
(P1)

prototype

raw data

real-time data

reconfiguration

Aninitial integrated spacecraft schedule, derived from

instrument and subsystem resource needs, that includes the
network control center TDRSS contact times and nominally
spans seven days.

A command issued to an instrument or subsystem to be executed
at some later time. These commands will be collected and
forwarded during an available uplink prior to execution.

An individual who is contracted to conduct a specific scientific
investigation. (Aninstrument Pl is the person designated by the
EOS Program as ultimately responsible for the delivery and
performance of standard products derived from an EOS
instrument investigation.).

Prototypes are focused developments of some aspect of the
system which may advance evolutionary change. Prototypes
may be developed without anticipation of the resulting software
being directly included in a formal release. Prototypes are
developed on afaster time scale than the incremental and formal
development track.

Dataintheir original packets, asreceived from the spacecraft and
instruments, unprocessed by EDOS.

* Level 0 — Raw instrument data at original resolution, time
ordered, with duplicate packets removed.

* Level 1A —Levd 0 data, which may have been reformatted or
transformed reversibly, located to a coordinate system, and
packaged with needed ancillary and engineering data.

» Level 1B — Radiometrically corrected and calibrated data in
physical units at full instrument resolution as acquired.

* Level 2—Retrieved environmental variables (e.g., ocean wave
height, soil moisture, ice concentration) at the same |location and
similar resolution asthe Level 1 source data.

» Level 3— Dataor retrieved environmental variables that have
been spatially and/or temporally resampled (i.e., derived from
Datathat are acquired and transmitted immediately to the ground
(as opposed to playback data). Delay islimited to the actual time
required to transmit the data.

A change in operational hardware, software, data bases or
procedures brought about by a change in a system’s objectives.

GL-6 305-CD-044-001



SCC-stored
commands and
tables

scenario

segment

Sensor

spacecraft
engineering
data

spacecraft
subsystems
activity list

spacecraft
subsystems
resource profile

target of
opportunity
(TOO)

thread

Commands and tables which are stored in the memory of the
central onboard computer on the spacecraft. The execution of
these commands or the result of loading these operational tables
occurs sometimefollowing their storage. Theterm “ core-stored”
applies only to the location where the items are stored on the
spacecraft and instruments; core-stored commands or tables
could be associated with the spacecraft or any of the instruments.

A description of the operation of the system in user's
terminology including a description of the output response for a
given set of input stimuli. Scenariosare used to define operations
concepts.

One of the three functional subdivisions of the ECS:

CSMS -- Communications and Systems Management Segment
FOS -- Flight Operations Segment

SDPS -- Science Data Processing Segment

A device which transmits an output signal in response to a
physical input stimulus (such as radiance, sound, etc.). Science
and engineering sensors are distinguished according to the
stimuli to which they respond.

» Sensor name: The name of the satellite sensor which was used
to obtain that data.

The subset of engineering data from spacecraft sensor
measurements and on-board computations.

A spacecraft subsystem's list of activities that nominally covers
seven days, used by the EOC for devel oping the detailed activity
schedule.

Anticipated resource needs for a spacecraft subsystem over a
target week, used by the EOC for establishing TDRSS contact
times and building the preliminary resource schedule.

A TOO is a science event or phenomenon that cannot be fully
predicted in advance, thus requiring timely system response or
high-priority processing.

A set of components (software, hardware, and data) and
operational procedures that implement a function or set of
functions.

GL-7 305-CD-044-001



thread, as used
in some
Systems
Engineering
documents

toolkits

A set of components (software, hardware, and data) and
operational proceduresthat implement ascenario, portion
of ascenario, or multiple scenarios.

Some user toolkits developed by the ECS contractor will be
packaged and delivered on a schedule independent of ECS
releases to facilitate science data processing software
development and other development activities occurring in
paralel with the ECS.

GL-8 305-CD-044-001



	1. Introduction
	1.1 Identification
	1.2 Scope
	1.3 Purpose
	1.4 Status and Schedule
	1.5 Document Organization

	2. Related Documentation
	2.1 Parent Document
	2.2 Applicable Documents
	2.3 Information Documents
	2.3.1 Information Document Referenced
	Figure 3.1-1. Telemetry Context Diagram
	Figure 3.2-1. Telemetry Decommutation Context Diag...
	Figure 3.2-4. Derived Telemetry Object Model



	3. Telemetry
	3.1 Telemetry Context Description
	3.2 Telemetry Decommutation
	3.2.1 Telemetry Decommutation Context
	3.2.2 Telemetry Decommutation Interfaces
	3.2.3 Telemetry Decommutation Object Model
	3.2.4 Telemetry Decommutation Dynamic Model
	3.2.5 Telemetry Decommutation Data Dictionary

	3.3 Memory Dump
	3.3.1 Memory Dump Context
	3.3.2 Memory Dump Interfaces
	3.3.3 Memory Dump Object Model
	3.3.4 Memory Dump Dynamic Model
	3.3.5 Memory Dump Data Dictionary

	3.4 Spacecraft State Check
	3.4.1 Spacecraft State Check Context
	3.4.2 Spacecraft State Check Interfaces
	3.4.3 Spacecraft State Check Object Model
	3.4.4 Spacecraft State Check Dynamic Model
	3.4.5 Spacecraft State Check Data Dictionary

	3.5 Parameter Server
	3.5.1 Parameter Server Context
	3.5.2 Parameter Server Interfaces
	3.5.3 Parameter Server Object Model
	3.5.4 Parameter Server Dynamic Model
	3.5.5 Parameter Server Data Dictionary

	Figure 3.2-2. Telemetry Decommutation Object Model...
	Figure 3.2-3. Parameter Table Object Model
	Figure 3.2-5. Decommutate an EDU Event Trace
	Figure 3.2-6. Select Subsystem Decommutation Mode ...
	Figure 3.2-7. Turn Archiving Mode On Event Trace
	Figure 3.2-8. Read a Database Event Trace
	Figure 3.2-9. Telemetry Derived Parameters Event T...
	Figure 3.2-10. Set Polynomial Coefficients for EU ...
	Figure 3.2-11. Request to Adjust Limits Event Trac...
	Figure 3.2-12. Obtain Current Limit Values Event T...
	Figure 3.2-13. Parameter Updating Event Trace
	Figure 3.3-1. Memory Dump Context Diagram
	Figure 3.3-2. Memory Dump Object Model
	Figure 3.3-3. Memory Dump State Transition Diagram...
	Figure 3.3-4. Awaiting Message State Event Trace
	Figure 3.3-5. Dump Mode State Event Trace
	Figure 3.4-1. Spacecraft State Check Context Diagr...
	Figure 3.4-2. Spacecraft State Check Object Model
	Figure 3.4-3. Initialize Spacecraft State Check Ev...
	Figure 3.4-4. Load Expected State Table Event Trac...
	Figure 3.4-5. State Check BaseLine Event Trace
	Figure 3.4-6. State Check Perform Event Trace
	Figure 3.5-1. Parameter Server Context Diagram
	Figure 3.5-2. Parameter Server Object Model
	Figure 3.5-3. Register a Continuous User Event Tra...
	Figure 3.5-4. Register a One Shot User Event Trace...
	Figure 3.5-5. Send Buffer to Continuous Client Eve...
	Figure 3.5-6. Update Client Interests Event Trace

	Abbreviations and Acronyms
	Glossary

